

Constructing Deepfake Detectors with Different Modalities Based on Feature Encoders

IJCAI 2025 Workshop On Deepfake Detection, Localization, and Interpretability

Speaker: Jiaming Chu

Authors: Jian Zhao¹, Jiaming Chu^{1,3}, Xin Zhang¹, Yuchu Jiang¹, Yuer Li¹, Xinru Wang¹, Mingxing Yuan¹, Xu Yang², Lei Jin^{3†}, Chi Zhang¹, Xuelong Li^{1†}

- 1 Institute of Artificial Intelligence (TeleAI), China Telecom
- 2 Southeast University, China;
- 3 Beijing University of Posts and Telecommunications

Backgrounds

DeepFake Challenging Reality

Backgrounds

- Different Modality
- Concealment From partial modifications
- Diverse Generative Method

Good Models are all Effective but Simple.

- Good Feature Extractor
- A Complete Locator and Classifier
- Good Loss Function Design

Good Detector and Classifier

Method

Track1 - Loupe

Method

(a) Patch-aware classifier

(b) Conditional pixel decoder layer

Track1 - Loupe

$$\mathcal{L}_{\text{patch}} = \frac{1}{N} \sum_{i=1}^{N} \left[-\alpha (1 - p_i)^{\gamma} \log(p_i) + \epsilon (1 - p_i)^{\gamma+1} \right]. \tag{1}$$

$$\mathcal{L}_{\text{cls}} = \mathcal{L}_{\text{patch}} + \mathcal{L}_{\text{global}}.$$
 (2)

$$\mathcal{L}_{\text{tversky}} = 1 - \frac{\text{TP}}{\text{TP} + \alpha \cdot \text{FP} + \beta \cdot \text{FN}},$$
 (3)

$$\mathcal{L}_{\text{seg}} = \lambda_1 \mathcal{L}_{\text{mask}} + \lambda_2 \mathcal{L}_{\text{tversky}} + \lambda_3 \mathcal{L}_{\text{box}}, \tag{4}$$

Experiment

Table 1: Leaderboard of the IJCAI 2025 Deepfake Detection and Localization Challenge. The *overall* score is computed as the average of AUC, F1, and IoU.

Rank	AUC	F1	IoU	Overall
1 (ours)	0.963	0.756	0.819	0.846
2	-	-	-	0.8161
3	-	-	-	0.8151
4	-	-	-	0.815
5	-	-	-	0.815

Table 2: Ablation on patch prediction.

AUC
0.946 0.920

Track1 - Loupe

Table 3: Ablation on conditional queries of our modified pixel decoder and training objectives.

	F1	IoU
Loupe (ours)		0.886
 conditional queries 	0.870	0.874

Method

Track2 - ERF-BA-TFD+

Figure 1: ERF-BA-TFD+ Model Architecture

Experiment

Track2 - ERF-BA-TFD+

Table 3: Performance Metrics After UMMA Integration on DDL-AV Dataset (Fusion Modality)

Table 1: Comparison of Performance Dataset vs Trained on DDL-AV Data

Metric	LAV-DF Sco	
AP@0.5	0.9630	
AP@0.75	0.8498	
AP@0.95	0.0446	
AR@100	0.8160	
AR@50	0.8048	
AR@20	0.7940	
AR@10	0.7876	0.4130

Metric	Score
AP@0.5	0.9243
AP@0.75	0.8050
AP@0.95	0.0451
AR@90	0.8246
AR@50	0.8121
AR@20	0.8039
AR@10	0.7952

e Metrics for Fusion Modality (Baseset

:	Score
.5	0.0163
.75	0.0117
.95	0.0014
00	0.2290
0	0.1681
∧സയ∠0	0.1182

Track2 - ERF-BA-TFD+

Table 3: Performance Metrics After UMMA Integration on DDL-AV Dataset (Fusion Modality)

Metric	Score
AP@0.5	0.9243
AP@0.75	0.8050
AP@0.95	0.0451
AR@90	0.8246
AR@50	0.8121
AR@20	0.8039
AR@10	0.7952

Table 4: Performance Comparison on Sampled Validation Set (Before and After ERF Integration)

Metric	Before	ERF Integration
AP@0.5	0.6472	0.8214
AP@0.75	0.5431	0.7287
AP@0.95	0.0704	0.0951
AR@100	0.6513	0.7886
AR@50	0.6342	0.7732
AR@20	0.6012	0.7464
AR@10	0.5836	0.7397

Thank you for your listening.

Code

Paper1

Paper2