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Abstract
Identifying misinformation videos like deepfakes
on social media is challenging due to their sub-
tle manipulations across both time and space that
are difficult for automated tools to reliably detect.
These limitations require approaches that lever-
age collective user intelligence and detailed human
feedback to pinpoint manipulations. Therefore, we
introduce Synlab, an algorithmic framework for
collaborative video misinformation identification.
Synlab enables users to provide detailed spatio-
temporal annotations, confidence scores, and tex-
tual rationales as structured multimodal input, cru-
cial for complex video content. Our confidence-
weighted spatio-temporal Intersection-over-Union
(IoU) algorithm synthesizes diverse user anno-
tations by iteratively merging them via spatio-
temporal overlap and confidence, while also in-
corporating user reliability and summarizing ra-
tionales using language models to generate trust-
worthy consensus representations. A 7-day online
study demonstrated Synlab achieved superior accu-
racy (97.20%) over alternative methods (No-Label:
80.80%, No-Agg: 95.80%). Further ablation stud-
ies confirmed benefits of confidence-weighting and
user historical performance in the aggregation.

1 Introduction
The proliferation of online misinformation, particularly so-
phisticated video manipulations such as deepfakes, criti-
cally threatens informed public discourse [Vosoughi et al.,
2018; Wang et al., 2019; Thomas, 2022]. Prevailing
countermeasures, predominantly centralized platform gover-
nance [Hartwig et al., 2024a], integrate automated detection,
human moderation, and fact-checking initiatives [Alrashidi
et al., 2022; Arsht and Etcovitch, 2018; Bélair-Gagnon et al.,
2023] but face significant limitations.
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Specifically, these platform-centric strategies face two fun-
damental challenges: (C1) limited detection accuracy, with
automated tools struggling against novel manipulations and
human moderation proving costly and prone to inconsistency;
and (C2) suboptimal user experience, where operational
opacity can diminish user agency and erode trust [Gorwa et
al., 2020]. These challenges highlight the need for comple-
mentary, user-empowering approaches for video verification.

Collective user intelligence offers a promising path to en-
hance both detection accuracy (C1) by aggregating diverse
assessments, and user experience (C2) by fostering critical
visual literacy and agency through direct involvement [Ja-
hanbakhsh et al., 2021; Pennycook et al., 2021]. How-
ever, effectively translating varied spatio-temporal video an-
notations into reliable assessments is a key hurdle. Exist-
ing mechanisms often fail to consolidate conflicting video
inputs for accurate collaborative verification [Hlaoua, 2024;
Belgacem et al., 2021; Suzuki, 2015], revealing a critical gap.

To address these video-specific challenges, this work in-
troduces Synlab, an algorithmic framework for collaborative
video misinformation identification through aggregating vi-
sual temporal annotations. Grounded in theories of Collective
Intelligence (CI) [Wolpert and Tumer, 1999] and Social Influ-
ence (SI) [Cialdini and Goldstein, 2004], Synlab’s design in-
tegrates interconnected annotation, aggregation and feedback
processes. This structure fosters diverse, independent, and
motivated user visual input while managing social dynamics.

The Synlab framework operationalizes these principles
through a multi-stage algorithmic process (Figure 1). Ini-
tially, user provide rich, structured visual annotations. These
primarily involve delineating specific visual spatio-temporal
regions within the video footage suspected of manipulation
and assigning semantic labels, confidence scores (0-100%),
and textual rationales. The annotation is facilitated by an
intuitive interface mirroring familiar paradigms such as on-
screen bullet commenting. Subsequently, Synlab leverages
a confidence-weighted 3D Intersection-over-Union (IOU)-
based mechanism to address consensus conflict from diverse
visual annotations. It iteratively merges annotations based
on spatio-temporal overlap (with an IoU threshold empiri-



Figure 1: The algorithmic framework of this paper.

cally set to 40%) alongside user-assigned confidence scores.
This confidence-weighting is theoretically grounded in the
idea that higher confidence likely indicates greater accu-
racy. Synlab then determines predominant labels for consoli-
dated visual regions by weighting both annotation confidence
and user historical performance, thereby prioritizing insights
from reliable annotators. It further synthesizes textual ratio-
nales using language model embeddings to generate coher-
ent explanations for aggregated assessments. Finally, Synlab
presents aggregated visual regions (computed as the weighted
average of individual regions), consensus labels, aggregated
confidence scores, and synthesized rationales hierarchically
via a layered visualization strategy. This strategy uses color-
coded overlays for immediate visual cues and enables inter-
active, hierarchical detail exploration.

To evaluate Synlab, we collected visual spatio-temporal
annotations from 48 participants over a 7-day period. This
study utilized a custom experimental social platform mim-
icking Twitter, deploying various algorithmic configurations.
Synlab demonstrated superior misinformation identification,
achieving an overall accuracy of 97.20%. This significantly
surpassed the configuration without peer label demonstra-
tion (denoted No-Label, 80.80% accuracy) and another show-
ing individual visual annotations without Synlab’s aggrega-
tion mechanism (denoted No-Agg, 95.80% accuracy). Fur-
thermore, Synlab rapidly achieved high accuracy even with
few visual annotations per item (93.44% with N = 2
per user, and 96.11% with N = 3 per user), outperform-
ing non-aggregated approaches with similar limited input.
These analyses also highlighted the efficacy of incorporating
confidence-weighted user historical performance (Rcw set-
ting) into the aggregation logic, which yielded the highest ac-
curacy (97.20%) when considering at least three annotations
(N = 3). To sum up, this work contributes:

• A comprehensive visual algorithmic framework for col-
laborative video misinformation identification, systematically
integrating structured visual spatio-temporal annotation.

• A novel confidence-weighted 3D spatio-temporal aggre-
gation algorithm to synthesize a reliable consensus from di-
verse visual assessments.

• Empirical validation through 7-day user visual annota-
tions, demonstrating Synlab’s superior accuracy (97.20%).

2 Background & Related Work
We review foundational literature on misinformation, its
social influence and collaborative countermeasures. We
then examine diverse identification and mitigation strategies,
alongside user interface design principles for collaborative
annotation, with a focus on video-specific challenges.

2.1 Identifying and Dealing with Misinformation
Researches have approached misinformation from technolog-
ical, user-centered and cultural or community-based perspec-
tives. Technological and socio-technical approaches inves-
tigate technical flaws and propose misinformation detection
algorithms. Fernandez et al. [Fernandez and Alani, 2018]
analyzed misinformation technologically and explored socio-
technical advancements, while Sharma et al. [Sharma et al.,
2019] examined the technical challenges of fake news and
dataset characteristics. AI has also been explored for mitiga-
tion. Jahanbakhsh et al. [Jahanbakhsh et al., 2023] developed
a personalized AI for content assessment prediction. How-
ever, technical solutions remain constrained by the sophisti-
cation of AI-generated videos, and users are also often reluc-
tant to adopt or trust AI-driven detection systems [Hartwig
et al., 2024a]. User-centered interventions empower users
in confronting misinformation. Kirchner et al. [Kirchner
and Reuter, 2020] conducted a three-step study on user-
centered approaches to counter misinformation on social me-
dia. Hartwig et al. [Hartwig et al., 2024b] systematized these
interventions and developed a taxonomy for intervention de-
sign. While AI assisted in processes like algorithmic label-
ing [Jahanbakhsh et al., 2023; Lu et al., 2022], current meth-
ods lack sufficient mechanisms to leverage collaborative in-
telligence for discerning subtle video manipulations. Cultural
or community-based approaches examine cross-cultural sus-
ceptibility differences or focus on community-specific dig-
ital literacy initiatives. Heuer et al. [Heuer and Glassman,
2022] identified cross-cultural variations in misinformation
detection, and Wilner et al. [Wilner et al., 2023] engaged
professionals to promote digital literacy in underserved com-
munities. However, they lack specific design explorations
for fine-grained spatio-temporal annotation, crucial for accu-
rately identifying manipulations in video content.

2.2 Social Influence of Misinformation
Research focused on designing techniques and crowdsourc-
ing platforms for public participation in content moderation.



Bozarth et al. [Bozarth et al., 2023] studied content moder-
ation workflows on social media platforms, noting that the
moderation process focuses not only on content authenticity
but also on user intent and potential harm. Jahanbakhsh et
al. [Jahanbakhsh et al., 2022] empower users through struc-
tured accuracy assessments and customizable content filters.
Kaufman et al. [Kaufman et al., 2022] demonstrated that
crowdsourcing platforms can effectively assess content au-
thenticity, especially for sensitive topics such as pandemics.
However, these existing platforms, primarily designed for
text content, lack interfaces and aggregation mechanisms for
unique spatio-temporal complexity of video misinformation.

2.3 User Interface Design for Collaborative
Annotating

Collaborative annotation techniques, often leveraged in
crowdsourcing, have been examined across theoretical, ap-
plication and technical dimensions. Theoretical-wise, Sture-
borg et al. [Stureborg et al., 2023] studied whether and how
concept hierarchies can inform the design of annotation in-
terfaces to improve labeling quality and efficiency. Hartwig
et al. [Hartwig et al., 2024b] surveyed user-centered mis-
information interventions and proposed taxonomies of col-
laborative annotations. Most studies examine individual
components for single-user annotations rather than develop-
ing video-oriented theories. Application-wise, Bhuiyan et
al. [Bhuiyan et al., 2023] proposed comparative news annota-
tion, while Wood et al. [Wood et al., 2018] built a mobile ap-
plication to support co-annotating online news articles. These
implementations lack the specific focus on video annotation
or governance. Technical-wise, Park et al. [Park et al., 2024]
discussed leveraging LLMs as interactive research tools to fa-
cilitate human-AI collaboration in annotating online risk data.
Shabani et al. [Shabani et al., 2021] leveraged humans’ fact-
checking skills by providing feedback on news stories about
the source, etc. Jahanbakhsh et al. [Jahanbakhsh et al., 2022;
Jahanbakhsh and Karger, 2024] designed a prototype social
media platform with in-browser signaling to support collab-
orative trusted annotations. However, all previous platforms
did not consider the annotation on rich multimodal data such
as videos. These modalities brought inherent challenges for
annotation, which we aimed to cope with.

3 Synlab: Design and Implementation
3.1 Algorithmic Design Guidelines
Synlab aims to enhance the identification of video misinfor-
mation by effectively processing and synthesizing human-
annotated visual data. Rooted in the theoretical foundations
of Collective Intelligence (CI) and Social Influence (SI), Syn-
lab addresses the inherent complexity of dynamic video con-
tent via a three-stage algorithmic pipeline: (i) the structur-
ing of visual annotations, (ii) the spatio-temporal aggregation
of observations, and (iii) the generation of synthesized vi-
sual feedback. This framework converts diverse, fine-grained
spatio-temporal annotations into reliable consensus. The fol-
lowing design principles guide the development of our algo-
rithms:

Figure 2: The interface for Synlab, where 1⃝ users toggled labeling
to draw regions on the interface, with its time range being the tempo-
ral regions. They input labels and confidence. The default viewing
state is shown in 2⃝.

(G1) Encode Dynamic Temporal Visual Information:
The framework must effectively encode and process the dy-
namic, sequential visual information in video, ensuring that
the user-identified spatio-temporal manipulations are accu-
rately captured and represented from visual annotations.

(G2) Mitigate Bias and Assess Reliability in Visual Ag-
gregation: The aggregation algorithm should integrate prin-
cipled mechanisms to attenuate biases arising from heteroge-
neous visual inputs, while dynamically evaluating the relia-
bility of individual annotators. By modulating the influence
of spatio-temporal annotations based on assessed trustwor-
thiness, the framework enhances the overall robustness of the
aggregated representation.

(G3) Efficiently Process Fine-grained Visual Data: The
algorithms should be optimized to efficiently process and in-
tegrate highly granular spatio-temporal visual annotations,
thereby preserving the richness of human perceptual input
necessary for the analysis of complex and nuanced visual ma-
nipulations.

(G4) Provide Algorithmic Support for Visual Evidence
Presentation: Feedback generation algorithms should ensure
the transparent demonstration of aggregated visual findings
and their underlying spatio-temporal evidence.

3.2 Synlab: System Architecture and Algorithms
Synlab, implemented as a web-based plugin for collabora-
tive video annotation within social media contexts, is struc-
tured around three core algorithmic components: (1) an intu-
itive spatio-temporal annotation interface, (2) a novel aggre-
gation algorithm that synthesizes collective intelligence, and
(3) a principled cold-start management strategy. Users iden-
tify misinformation by marking rectangular spatio-temporal
regions on the video player (Figure 2 1⃝). Each region is sup-
plemented with a semantic label (either predefined or user-
defined), a confidence score (0–100%), and optional textual
rationales. Synlab visualizes the submitted annotations on a
timeline, where hovering over each region reveals the corre-
sponding aggregated consensus labels.

Annotation and Interaction System
The Synlab frontend, implemented in JavaScript, utilizes
the HTML Canvas API to render a transparent overlay on



top of the video player. This overlay enables users to cre-
ate and visualize spatio-temporal annotations. User inter-
actions—such as toggling annotation mode, specifying time
segments, and submitting annotation data—are handled by
client-side JavaScript. The plugin architecture is operating
system–independent, requiring only a modern web browser
with support for JavaScript and the HTML Canvas API (e.g.,
current versions of Chrome, Firefox, Edge, or Safari). Com-
patibility has been verified across several major video-centric
social media platforms, including YouTube, Twitter, and Bili-
bili.

Annotation data is transmitted asynchronously to the back-
end upon submission. The backend is developed in Python,
utilizing the Flask web framework to handle API requests
and execute the aggregation logic. Numerical computations
integral to the aggregation process, such as the confidence-
weighted Intersection-over-Union (IoU) calculations, are per-
formed using NumPy.

Confidence-Weighted Annotation Aggregation Algorithm
To effectively leverage collective user intelligence, Synlab
introduces a novel confidence-weighted annotation aggrega-
tion algorithm (detailed in Algorithm 1). This algorithm sig-
nificantly advances beyond traditional methods by adopting
a confidence-weighted inductive strategy that incorporates
user-assigned confidence and historical reliability, crucial for
discerning subtle manipulations in complex spatio-temporal
data. The aggregation process has two phases:

Phase 1: Merging Annotations.
1. Sorting: Annotations (A) are initially sorted in descend-

ing order based on their confidence scores.
2. Iterative Merging: The algorithm iterates through the

sorted annotations. For each annotation (a), it attempts to
merge it with existing aggregated regions (R).
• A merge occurs if the 3D Intersection-over-Union (IoU)

between a’s region and an existing region r’s region meets or
exceeds a predefined threshold (IoUthresh), balancing label
granularity with semantic coherence. The threshold is empir-
ically set to 40%.
• The AppendAnnotationByLabel function manages the

addition of a’s information to r. If a’s label matches an ex-
isting label stream in r, the function appends a’s confidence
score and rationale to that stream. Otherwise it contributes a
distinct label stream within r.
• The ConfWeightedAvg function updates the spatial ex-

tent of r, calculating the merged region’s coordinates as
a weighted average of all annotations contributing to r.
This method, unlike Non-Maximum Suppression (NMS), re-
tains broad collective intelligence by weighting contributions
rather than solely selecting the highest confidence annotation,
thereby mitigating risks from potential errors in isolated high-
confidence inputs.
• If an annotation a does not achieve the IoUthresh with

any existing region in R, it initiates a new aggregated region
cluster via the CreateNewAggregatedRegion function.

Phase 2: Calculating Aggregated Attributes.
Once all annotations are processed, the algorithm calcu-

lates the final attributes for each aggregated region r in R.
1. For each label identified within an aggregated region r:

• Weighted Score Calculation: For each individual an-
notation contributing to this label, our method computes a
weighted score by multiplying the annotation’s confidence by
the user’s average historical annotation confidence (retrieved
via GetUserHist).

Algorithm 1 Confidence-weighted Visual Annotation Aggre-
gation

Require: Annotations A = {ai}, IoUthresh, T
1: Asorted ← SortDesc(A, by confidence)
2: R← []

▷ Phase 1: Merge annotations
3: for all a ∈ Asorted do
4: merged← False
5: for all r ∈ R do
6: if IoU(a.region, r.region) ≥ IoUthresh then
7: AppendAnnotationByLabel(r, a)
8: r.annotations.append(a)
9: r.region ←

ConfWeightedAvg(r.annotations)
10: merged← True; break
11: end if
12: end for
13: if not merged then
14: newAggR← CreateNewAggregatedRegion(a)
15: R.append(newAggR)
16: end if
17: end for

▷ Phase 2: Calculate aggregated attributes
18: for all r ∈ R do
19: for all label, data in r.labelData.items() do ▷ Iterate

through each label in the region
20: confs← [pair.confidence for pair in data]
21: reasons← [pair.reason for pair in data]
22: wScores← []
23: for all pair in data do
24: hist← GetUserHist(pair.user)
25: wScores.append(pair.confidence ×

Avg(hist))
26: end for
27: r.aggInfo[label].score← Avg(wScores)
28: r.aggInfo[label].conf← Avg(Top(T, confs))
29: r.aggInfo[label].reason← LM Agg(reasons)
30: end for
31: end for
32: return R

• Final Label Score: The aggregated score for this la-
bel (r.aggInfo[label].score) is the average of these weighted
scores. The predominant label for the aggregation region r is
determined as the label achieving the highest final aggregated
score. This approach considers both the self-assessed confi-
dence for the current annotation and the user’s demonstrated
capability derived from historical performance.
• Aggregated Confidence: The aggregated confidence for

the label (r.aggInfo[label].conf) is calculated as the average of
the top-T (empirically set to T = 5) highest individual con-
fidence scores among annotations contributing to this label.



This ensures that the aggregated confidence is supported by
multiple high-confidence users.
• Aggregated Rationale: Textual rationales associated with

the label are aggregated using language model-based embed-
dings (LM Agg), similar to prior work, to synthesize a rep-
resentative reason while mitigating the influence of idiosyn-
cratic or erroneous individual textual inputs.

The algorithm returns the set of aggregated regions R, each
populated with its determined predominant label, aggregated
confidence and synthesized rationale.

Cold-start Annotation Generation Strategy
To address the cold-start challenges in video annotation (i.e.,
no prior user data), Synlab initiates the process with a con-
strained random generation of seed annotations. This strat-
egy aims to mitigate anchoring bias and promote users’ crit-
ical evaluation from inception, presenting these seeds as ref-
erence points or provocations rather than definitive guides,
thereby facilitating efficient task management.

The generation is governed by empirically-derived con-
straints on crucial parameters: first, bounding boxes are
strategically positioned away from frame boundaries and con-
strained to a mid-to-small size range. Second, annotations are
temporally dispersed across distinct video segments, main-
taining a controlled density (e.g., typically one to three labels
per approximately five segments). Third, attributes such as
initial confidence scores, label types and accompanying ra-
tionales are diversified. Fourth, a deliberate mix of both plau-
sible and ostensibly incorrect examples are included to stimu-
late rigorous user assessment. Collectively, these constraints
guide parameter sampling, ensuring the initial seeded envi-
ronment actively supports the objectives of the subsequent
user labeling phase.

Demonstration
For visualizing aggregated results, the backend calculates
aggregated confidence (Cagg) and inter-annotator agreement
(Aagg) metrics for each consolidated region. Synlab then
maps these metrics to specific colors based on predefined
thresholds: green denotes high consensus (Cagg ≥ 75 and
Aagg ≥ 80), red indicates low confidence or agreement
(Cagg ≤ 40 or Aagg ≤ 50), and orange represents inter-
mediate values. The frontend displays these colors as semi-
transparent overlays (40% opacity) on the video, providing
immediate visual feedback on the collective evaluation of
video segments. Users can hover over aggregated annota-
tion regions to see labels and details, with further hovering
on individual labels revealing their rationales.

4 Evaluating Synlab Within Social Media
Environment

To assess the effectiveness of Synlab in identifying misin-
formation videos within social media environments, we con-
ducted an evaluation study comparing Synlab and alternative
techniques. Guided by previous literature [Jahanbakhsh et al.,
2022; Jahanbakhsh and Karger, 2024], we collected user data
over a seven-day period.

4.1 Experiment Material and Platform
The experiment material contained three prominent misinfor-
mation video datasets: FakeSV [Qi et al., 2023], FakeTT [Pa-
padopoulou et al., 2019] and FVC [Bu et al., 2024] dataset.
The selection was guided by three key criteria: (1) en-
abling a rigorous comparison of AI-driven versus human-
perceived ground truth accuracy, where these datasets were
commonly benchmarked with AI algorithms [Qi et al., 2023;
Bu et al., 2024; Zeng et al., 2024], (2) ensuring thematic
diversity to broaden the scope of misinformation analysis,
and (3) prioritizing datasets with familiar, real-world con-
tent to enhance user engagement and relevance. To bal-
ance experimental scope with participant load considerations
given our recruitment constraints, we randomly sampled 50
videos from each dataset, totaling 150 videos, whose num-
ber is similar to prior practices [Jahanbakhsh et al., 2022;
Jahanbakhsh and Karger, 2024].

We developed an online social media platform as the exper-
iment platform due to ethical concerns, mimicking the layout
of Twitter. We advocated to participants the platforms and let
them become familiar with the platform in advance.

4.2 Data Collection Process
The study has technique as the only one between-subjects
factor. We compared Synlab with two alternative tech-
niques, inspired by previous work [Jahanbakhsh et al., 2022;
Jahanbakhsh and Karger, 2024] and specifically tailored to
video misinformation annotation context.
• Synlab: it is implemented as in Section 3.
• No-Label: This variant follows Synlab’s annotation and

aggregation process but does not display other users’ annota-
tions on the videos.
• No-Agg: The annotation process is similar to Synlab, but

users’ annotations were not aggregated and thus the demon-
stration showed each users’ aggregation separately, similar to
the previous systems [Jahanbakhsh and Karger, 2024]. How-
ever, the demonstration form is adapted to video-based forms
as Synlab, because the original form is targeted at textual an-
notations and not suitable for video misinformation.

Participants needed to view several videos a day on the
platform and annotate suspicious ones. They needed to an-
notate at least five videos a day, determined according to pre-
vious literature [Jahanbakhsh et al., 2021; Jahanbakhsh and
Karger, 2024] to balance users’ fatigue and align with their
daily viewing practices.

We recruited 48 participants (17 males, 29 females, with
a mean age of 22.9, SD=2.3), with a mix of expertise lev-
els ranging from novice users to experts in media literacy,
information science, and AI. The diversity of participants en-
sured that the study reflected a broad spectrum of social me-
dia users’ perspectives. Participants were each compensates
210RMB for their time, and informed consent was obatined
before participation. The study was approved by our univer-
sity’s Institutional Review Board (IRB).

4.3 Results
Our evaluation showed Synlab’s effectiveness in enhancing
video misinformation identification accuracy and fostering



Figure 3: Average accuracy of different techniques across seven
days.

user engagement, aligning with our core design goals. Sta-
tistical analyses employed One-way Analysis of Variance
(one-way ANOVA) for accuracy and confidence metrics, and
Wilcoxon tests for subjective ratings, with appropriate post-
hoc comparisons (Tukey HSD and Nemenyi, respectively).

Annotation Accuracy
Annotation accuracy, defined as the correct identification of
misinformation in videos, was a key metric in evaluating Syn-
lab. Synlab achieved a mean accuracy of 97.20% across
datasets (Table 1), significantly surpassing the No Label con-
dition (∆ = +16.40%) and modestly improving upon the
No Agg condition (∆ = +1.40%). A one-way ANOVA
confirmed significant accuracy differences across techniques
(F2,45 = 4.031, p < .05). Post-hoc analyses revealed that
Synlab’s accuracy was significantly higher than that of the
No Label condition (p < .05), highlight the efficacy of Syn-
lab’s integrated aggregation and demonstration in producing
reliable collective judgments.

Figure 3 illustrates the 7-day improvement in annotation
accuracy across all techniques. Synlab demonstrated rapid
initial accuracy gains, nearing saturation by Day 5. In con-
trast, the No Agg technique reached 95.80% accuracy by Day
7 at a slower pace, while the No Label technique achieved
a final accuracy of 80.80% on Day 7. Time significantly af-
fected accuracy for Synlab (F2,45 = 3.904, p < .05), No Agg
(F2,45 = 4.153, p < .05), and No Label (F2,45 = 5.304,
p < .01). However, we found no significant inter-day dif-
ferences in post-hoc tests, which suggests a general improve-
ment trend rather than distinct daily accuracy leaps.

Synlab yielded more convergent labeling results, likely en-
hancing its higher accuracy. Artificial labels predominated
for Synlab, accounting for 33.97% of its total labels. In
contrast, the No Agg condition most frequently showed Mis-
match (18.88%) and Artificial (18.07%) labels, while Mis-
match (22.8%) and Artificial (15.6%) were the leading labels
for the No Label condition.

Synlab’s high accuracy through collaborative user anno-
tation proves compelling against contemporary algorithmic
methods for detecting video misinformation on identical
datasets. For instance, SV-FEND achieved an accuracy of
79.31% on FakeSV [Qi et al., 2023]. FakingRecipe reported
accuracies of 85.35% on FakeSV and 79.15% on FakeTT [Bu
et al., 2024], and MMVD attained 82.64% on FakeSV and
90.36% on FVC [Zeng et al., 2024]. These results underscore
that Synlab effectively facilitates user-initiated collaborative

Figure 4: A Kernel Density Estimation (KDE) plot illustrating the
confidence distribution of the annotations for different techniques.

annotation for identifying video misinformation, suggesting
its viability for prominent social media platforms like Tik-
Tok [Hartwig et al., 2024a], Twitter, and Bilibili.

User confidence ratings provided insight into perceived
certainty and the system’s capacity to support accurate judg-
ment (Figure 4). Participants using Synlab reported the high-
est mean confidence at 84.89% (SD=15.89%), significantly
higher compared to the No Agg condition (mean=78.97%,
SD=16.36%) and markedly greater than the No Label condi-
tion (mean=67.48%, SD=27.33%), which exhibited consid-
erable uncertainty. Statistical tests confirmed a significant ef-
fect of the technique on confidence ratings (F2,45 = 4.05,
p < .05). Further examination of Synlab’s confidence distri-
bution reveals a tendency towards higher certainty: the lowest
30% of ratings averaged 70.00%, the middle 40% averaged
90.00%, and the highest 30% achieved 100.00% confidence.
In contrast, No Agg showed ratings of 60.00%, 82.00% and
100.00% for the lowest, middle and highest percentages, re-
spectively, while No label reflected greater user uncertainty
with corresponding averages of only 30.00%, 80.00% and
90.00%. These results suggest that Synlab’s design effec-
tively supports users in making decisive assessments.

Core Aggregation Algorithm Evaluation
To scrutinize the efficacy of our aggregation mechanism, we
evaluated the accuracy of classifying a video as “Fake” con-
tingent upon receiving a minimum number of annotations
(N). As delineated in Table 2, Synlab’s aggregation strategy
shows a marked superiority as annotation density increases.
While the No-Agg condition shows a baseline accuracy, Syn-
lab’s accuracy escalates rapidly, achieving 0.9344 with just
N = 2 annotations and nearing perfection at 0.9611 with
N = 3 annotations. Both techniques reach perfect accu-
racy when N ≥ 4 annotations are present. This trajectory
compellingly illustrates that Synlab’s confidence-weighted
spatio-temporal IoU algorithm effectively synthesizes diverse
user inputs into reliable consensus, particularly outperform-
ing non-aggregated approaches when a critical mass of few
annotations becomes available. This rapid convergence to
high accuracy with a small number of annotations under-
scores the algorithm’s efficiency and its potential for timely
misinformation identification.



Table 1: The accuracy of Synlab and other alternative techniques, where ± denoted one standard deviation across videos. Overall denoted
the averaged accuracy on three datasets.

FakeSV FakeTT FVC Overall

No Agg 94.50%±6.00% 80.60%±7.90% 100.00%±0.00% 95.80%±4.20%

No Label 80.50%±11.60% 80.80%±3.10% 80.00%±7.40% 80.80%±8.70%

Synlab 96.70%±4.3% 94.00%±11.30% 100.00%±0.00% 97.20%±4.80%

Table 2: The aggregated accuracy of different techniques across dif-
ferent minimum number of annotations (N). We increased N until
the results converged.

Conditions No-Agg Synlab
N = 1 0.8272 0.8111
N = 2 0.8769 0.9344
N = 3 0.9434 0.9611
N = 4 0.9480 0.9720
N = 5 0.9580 0.9720

Effect of User Historical Performance
Synlab leverage user historical performance to refine its ag-
gregation process by assessing and considering annotator re-
liability. We assess annotator reliability based on True Pos-
itives (TP) for correctly identified “Fake” videos and False
Positives (FP) for “Real” videos misclassified as “Fake”,
comparing three distinct settings:

Simple Precision (Rsp): Calculated as Rsp = TP
TP+FP ,

this metric equally weights all judgments, disregarding user
confidence or prior beliefs.

Confidence-Weighted Precision (Rcw): This refines Rsp

by incorporating user-expressed certainty, using Rcw =∑
i∈TP annotations confidencei∑

i∈TP annotations confidencei+
∑

j∈FP annotations confidencej
. It prioritizes

high-confidence correct annotations and heavily penalizes
high-confidence errors.

Bayesian Reliability (Rbb): A Beta(1,1) distribution
forms the basis for this reliability estimate Rbb =

αprior+TP
αprior+βprior+TP+FP = 1+TP

2+TP+FP . The use of this
Beta(1,1) prior signifies maximal initial uncertainty (a uni-
form prior) regarding user reliability and provides stable esti-
mates, especially for sparse data, as its influence diminishes
with accumulating annotations.

Table 3: Aggregated accuracy of Synlab under different histori-
cal performance calculation settings (Rsp: Simple Precision, Rcw:
Confidence-Weighted Precision, Rbb: Bayesian Reliability) with
varying minimum annotations (N). We increased N until the results
converged.

Conditions Rsp Rcw Rbb

N = 1 0.8272 0.8250 0.8220
N = 2 0.8750 0.8814 0.8650
N = 3 0.9362 0.9720 0.9005
N = 4 0.9550 0.9720 0.9328

Table 3 presented the empirical impact of these reliability

settings on Synlab’s aggregated accuracy, contingent on the
minimum number of reliable annotations. The results under-
score that the methodology chosen for assessing user reliabil-
ity substantially influences the system’s performance. While
Rsp offers a marginal advantage when only a single annota-
tion is required (N = 1, accuracy 0.8272), the Rcw setting
consistently yields superior accuracy for N ≥ 2. This advan-
tage is particularly salient at N = 3, where Rcw achieves an
accuracy of 0.9720, significantly outperforming Rsp (0.9362)
and Rbb (0.9005). Rcw maintains its high performance at
N=4, achieving 0.9720 accuracy (versus 0.9550 for Rsp and
0.9328 for Rbb). Our findings show that incorporating user-
expressed confidence via Rcw setting effectively discerns re-
liable annotators from historical data, underscoring the im-
portance of nuanced feedback.

5 Discussions and Future Work
Synlab offers a robust framework for effectively leverag-
ing collective user input, a critical objective in collabora-
tive systems [Jahanbakhsh and Karger, 2024]. Its core ca-
pability of algorithmically synthesizing diverse, fine-grained
user inputs into a reliable consensus distinguishes it from
platforms that lack specialized algorithmic tools for granu-
lar content auditing [Hartwig et al., 2024a]. This capabil-
ity is highly extensible, with potential applications includ-
ing enhancing crowdsourced data labeling for machine learn-
ing [Chang et al., 2017], developing nuanced peer-review
systems [Pareek and Goncalves, 2024], and implementing ad-
vanced community-based content moderation platforms [Ja-
hanbakhsh et al., 2022].

While developed for video, Synlab’s algorithms are adapt-
able to static visual media [Castano et al., 2019] or text-based
content [Suzuki, 2015]. Such adaptations would primarily ne-
cessitate modifications to the annotation interface and, where
applicable, adjustments for handling temporal components.
Given the prevalence of multimodal content [Griffith and Pa-
pacharissi, 2010; Abas, 2011], Synlab’s methodology can
analyze each modality independently or integrate analyses
through defined linking mechanisms.
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References
[Abas, 2011] Suriati Abas. Blogging: A multimodal per-

spective. Changing demands, changing directions. Pro-
ceedings ascilite Hobart, pages 13–20, 2011.

[Alrashidi et al., 2022] Bedour Alrashidi, Amani Jamal, Im-
tiaz Khan, and Ali Alkhathlan. A review on abusive con-
tent automatic detection: approaches, challenges and op-
portunities. PeerJ Computer Science, 8:e1142, 2022.

[Arsht and Etcovitch, 2018] Andrew Arsht and Daniel Et-
covitch. The human cost of online content moderation.
Harvard Journal of Law and Technology, 2, 2018.

[Bailey et al., 2012] Michael Bailey, David Dittrich, Erin
Kenneally, and Doug Maughan. The menlo report. IEEE
Security & Privacy, 10(2):71–75, 2012.

[Beauchamp and others, 2008] Tom L Beauchamp et al. The
belmont report. The Oxford textbook of clinical research
ethics, pages 149–155, 2008.

[Bélair-Gagnon et al., 2023] Valérie Bélair-Gagnon, Re-
bekah Larsen, Lucas Graves, and Oscar Westlund.
Knowledge work in platform fact-checking partnerships.
2023.

[Belgacem et al., 2021] Khadidja Belgacem, Mouna Ke-
noui, Feriel Bouguerra, Mohammed Laidi, Amine Sem-
rani, and Celia Sellah. Collaborative visualization and
annotations of dicom images for real-time web-based
telemedicine system. In 2021 International Confer-
ence on Recent Advances in Mathematics and Informatics
(ICRAMI), pages 1–6. IEEE, 2021.

[Bhuiyan et al., 2023] Md Momen Bhuiyan, Sang Won Lee,
Nitesh Goyal, and Tanushree Mitra. Newscomp: Facilitat-
ing diverse news reading through comparative annotation.
In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pages 1–17, 2023.

[Bozarth et al., 2023] Lia Bozarth, Jane Im, Christopher
Quarles, and Ceren Budak. Wisdom of two crowds: Mis-
information moderation on reddit and how to improve this
process—a case study of covid-19. Proceedings of the
ACM on Human-Computer Interaction, 7(CSCW1):1–33,
2023.

[Bu et al., 2024] Yuyan Bu, Qiang Sheng, Juan Cao, Peng
Qi, Danding Wang, and Jintao Li. Fakingrecipe: Detecting
fake news on short video platforms from the perspective

of creative process. In Proceedings of the 32nd ACM In-
ternational Conference on Multimedia, pages 1351–1360,
2024.

[Castano et al., 2019] Silvana Castano, Alfio Ferrara, and
Stefano Montanelli. Leveraging crowd skills and consen-
sus for collaborative web-resource labeling. Future Gen-
eration Computer Systems, 95:790–801, 2019.

[Chang et al., 2017] Joseph Chee Chang, Saleema Amershi,
and Ece Kamar. Revolt: Collaborative crowdsourcing for
labeling machine learning datasets. In Proceedings of the
2017 CHI conference on human factors in computing sys-
tems, pages 2334–2346, 2017.

[Cialdini and Goldstein, 2004] Robert B Cialdini and Noah J
Goldstein. Social influence: Compliance and conformity.
Annu. Rev. Psychol., 55(1):591–621, 2004.

[Fernandez and Alani, 2018] Miriam Fernandez and Harith
Alani. Online misinformation: Challenges and future di-
rections. In Companion proceedings of the the web con-
ference 2018, pages 595–602, 2018.

[Gorwa et al., 2020] Robert Gorwa, Reuben Binns, and
Christian Katzenbach. Algorithmic content modera-
tion: Technical and political challenges in the automa-
tion of platform governance. Big Data & Society,
7(1):2053951719897945, 2020.

[Griffith and Papacharissi, 2010] Maggie Griffith and Zizi
Papacharissi. Looking for you: An analysis of video blogs.
First Monday, 2010.

[Hartwig et al., 2024a] Katrin Hartwig, Tom Biselli,
Franziska Schneider, and Christian Reuter. From adoles-
cents’ eyes: Assessing an indicator-based intervention to
combat misinformation on tiktok. In Proceedings of the
2024 CHI Conference on Human Factors in Computing
Systems, pages 1–20, 2024.

[Hartwig et al., 2024b] Katrin Hartwig, Frederic Doell, and
Christian Reuter. The landscape of user-centered misinfor-
mation interventions-a systematic literature review. ACM
Computing Surveys, 56(11):1–36, 2024.

[Heuer and Glassman, 2022] Hendrik Heuer and Elena Leah
Glassman. A comparative evaluation of interventions
against misinformation: Augmenting the who checklist. In
Proceedings of the 2022 CHI Conference on Human Fac-
tors in Computing Systems, pages 1–21, 2022.

[Hlaoua, 2024] Lobna Hlaoua. An overview of aggregation
methods for social networks analysis. Knowledge and In-
formation Systems, pages 1–28, 2024.

[Jahanbakhsh and Karger, 2024] Farnaz Jahanbakhsh and
David R Karger. A browser extension for in-place sig-
naling and assessment of misinformation. In Proceedings
of the CHI Conference on Human Factors in Computing
Systems, pages 1–21, 2024.

[Jahanbakhsh et al., 2021] Farnaz Jahanbakhsh, Amy X
Zhang, Adam J Berinsky, Gordon Pennycook, David G
Rand, and David R Karger. Exploring lightweight inter-
ventions at posting time to reduce the sharing of misin-



formation on social media. Proceedings of the ACM on
human-computer interaction, 5(CSCW1):1–42, 2021.

[Jahanbakhsh et al., 2022] Farnaz Jahanbakhsh, Amy X
Zhang, and David R Karger. Leveraging structured
trusted-peer assessments to combat misinformation. Pro-
ceedings of the ACM on Human-computer Interaction,
6(CSCW2):1–40, 2022.

[Jahanbakhsh et al., 2023] Farnaz Jahanbakhsh, Yannis Kat-
sis, Dakuo Wang, Lucian Popa, and Michael Muller. Ex-
ploring the use of personalized ai for identifying misin-
formation on social media. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Sys-
tems, pages 1–27, 2023.

[Kaufman et al., 2022] Robert A Kaufman, Michael Robert
Haupt, and Steven P Dow. Who’s in the crowd matters:
Cognitive factors and beliefs predict misinformation as-
sessment accuracy. Proceedings of the ACM on Human-
Computer Interaction, 6(CSCW2):1–18, 2022.

[Kirchner and Reuter, 2020] Jan Kirchner and Christian
Reuter. Countering fake news: A comparison of possi-
ble solutions regarding user acceptance and effectiveness.
Proceedings of the ACM on Human-computer Interaction,
4(CSCW2):1–27, 2020.

[Lu et al., 2022] Zhuoran Lu, Patrick Li, Weilong Wang, and
Ming Yin. The effects of ai-based credibility indicators on
the detection and spread of misinformation under social
influence. Proceedings of the ACM on Human-Computer
Interaction, 6(CSCW2):1–27, 2022.

[Papadopoulou et al., 2019] Olga Papadopoulou, Markos
Zampoglou, Symeon Papadopoulos, and Ioannis Kompat-
siaris. A corpus of debunked and verified user-generated
videos. Online information review, 43(1):72–88, 2019.

[Pareek and Goncalves, 2024] Saumya Pareek and Jorge
Goncalves. Peer-supplied credibility labels as an on-
line misinformation intervention. International Journal of
Human-Computer Studies, 188:103276, 2024.

[Park et al., 2024] Jinkyung Park, Pamela Wisniewski, and
Vivek Singh. Leveraging large language models (llms)
to support collaborative human-ai online risk data anno-
tation. arXiv preprint arXiv:2404.07926, 2024.

[Pennycook et al., 2021] Gordon Pennycook, Ziv Epstein,
Mohsen Mosleh, Antonio A Arechar, Dean Eckles, and
David G Rand. Shifting attention to accuracy can reduce
misinformation online. Nature, 592(7855):590–595, 2021.

[Qi et al., 2023] Peng Qi, Yuyan Bu, Juan Cao, Wei Ji, Rui-
hao Shui, Junbin Xiao, Danding Wang, and Tat-Seng
Chua. Fakesv: A multimodal benchmark with rich social
context for fake news detection on short video platforms.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence. AAAI, 2023.

[Shabani et al., 2021] Shaban Shabani, Zarina Charlesworth,
Maria Sokhn, and Heiko Schuldt. Sams: human-in-the-
loop approach to combat the sharing of digital misinfor-
mation. In Proceedings of the AAAI 2021 Spring Sym-
posium on Combining Machine Learning and Knowledge
Engineering. CEUR workshop proceedings, 2021.

[Sharma et al., 2019] Karishma Sharma, Feng Qian,
He Jiang, Natali Ruchansky, Ming Zhang, and Yan Liu.
Combating fake news: A survey on identification and
mitigation techniques. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(3):1–42, 2019.

[Stureborg et al., 2023] Rickard Stureborg, Bhuwan Dhin-
gra, and Jun Yang. Interface design for crowdsourcing
hierarchical multi-label text annotations. In Proceedings
of the 2023 CHI Conference on Human Factors in Com-
puting Systems, pages 1–17, 2023.

[Suzuki, 2015] Ryo Suzuki. Poster: Interactive and collab-
orative source code annotation. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering,
volume 2, pages 799–800. IEEE, 2015.

[Thomas, 2022] Naomi Thomas. Doctors worry that on-
line misinformation will push abortion-seekers toward in-
effective, dangerous methods. CNN, 2022. Available at:
https://www.cnn.com.

[Vosoughi et al., 2018] Soroush Vosoughi, Deb Roy, and
Sinan Aral. The spread of true and false news online. sci-
ence, 359(6380):1146–1151, 2018.

[Wang et al., 2019] Yuxi Wang, Martin McKee, Aleksandra
Torbica, and David Stuckler. Systematic literature review
on the spread of health-related misinformation on social
media. Social science & medicine, 240:112552, 2019.

[Wilner et al., 2023] Tamar Wilner, Kayo Mimizuka, Ayesha
Bhimdiwala, Jason C Young, and Ahmer Arif. It’s about
time: Attending to temporality in misinformation interven-
tions. In Proceedings of the 2023 CHI Conference on Hu-
man Factors in Computing Systems, pages 1–19, 2023.

[Wolpert and Tumer, 1999] David H Wolpert and Kagan
Tumer. An introduction to collective intelligence. arXiv
preprint cs/9908014, 1999.

[Wood et al., 2018] Gavin Wood, Kiel Long, Tom Feltwell,
Scarlett Rowland, Phillip Brooker, Jamie Mahoney, John
Vines, Julie Barnett, and Shaun Lawson. Rethinking en-
gagement with online news through social and visual co-
annotation. In Proceedings of the 2018 CHI conference on
human factors in computing systems, pages 1–12, 2018.

[Zeng et al., 2024] Zhi Zeng, Minnan Luo, Xiangzheng
Kong, Huan Liu, Hao Guo, Hao Yang, Zihan Ma, and Xi-
ang Zhao. Mitigating world biases: A multimodal multi-
view debiasing framework for fake news video detection.
In Proceedings of the 32nd ACM International Conference
on Multimedia, pages 6492–6500, 2024.


	Introduction
	Background & Related Work
	Identifying and Dealing with Misinformation
	Social Influence of Misinformation
	User Interface Design for Collaborative Annotating

	Synlab: Design and Implementation
	Algorithmic Design Guidelines
	Synlab: System Architecture and Algorithms
	Annotation and Interaction System
	Confidence-Weighted Annotation Aggregation Algorithm
	Cold-start Annotation Generation Strategy
	Demonstration


	Evaluating Synlab Within Social Media Environment
	Experiment Material and Platform
	Data Collection Process
	Results
	Annotation Accuracy
	Core Aggregation Algorithm Evaluation
	Effect of User Historical Performance


	Discussions and Future Work

