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Abstract
This paper presents a system for detecting fake
audio-visual content (i.e., video deepfake), devel-
oped for Track 2 of the DDL Challenge. The
proposed system employs a two-stage framework,
comprising unimodal detection and multimodal
score fusion. Specifically, it incorporates an au-
dio deepfake detection module and an audio lo-
calization module to analyze and pinpoint manip-
ulated segments in the audio stream. In parallel,
an image-based deepfake detection and localization
module is employed to process the visual modal-
ity. To effectively leverage complementary infor-
mation across different modalities, we further pro-
pose a multimodal score fusion strategy that inte-
grates the outputs from both audio and visual mod-
ules. Guided by a detailed analysis of the train-
ing and evaluation dataset, we explore and evalu-
ate several score calculation and fusion strategies
to improve system robustness. Overall, the final
fusion-based system achieves an AUC of 0.87, an
AP of 0.55, and an AR of 0.23 on the challenge test
set, resulting in a final score of 0.5528.

1 Introduction
With the rapid advancement of AI-generated content (AIGC)
technologies, including face synthesis/replacement and au-
dio synthesis, the realism and naturalness of synthetic me-
dia have reached unprecedented levels [Croitoru et al., 2024].
Although these breakthroughs enable innovative applications
in entertainment and human-computer interaction, they also
raise serious concerns about the authenticity of information.
A growing threat is the proliferation of partially manipulated
videos [Liu et al., 2024], where specific frames are selected
to synthesize or edit facial expressions or voices and seam-
lessly embedded in genuine recordings. These multimodal
forgeries are particularly difficult to detect, as they often ex-
ploit temporal and contextual consistency to evade both hu-

∗Equal contribution.

Figure 1: Overview of the proposed audio-visual deepfake detec-
tion and localization framework. The system is composed of three
modality-specific modules and two score fusion units. The Audio
Detection Module outputs a single video-level confidence score in-
dicating the presence of audio tampering. The Audio Localization
Module produces frame-level forgery likelihoods, which are aggre-
gated to generate interval-level scores based on pre-defined temporal
segments. The Image Detection and Localization Module con-
currently provides both video-level detection and frame-wise visual
tampering scores. For detection, video-level scores from the audio
and image branches are fused via the Detection Score Fusion. For
localization, frame- or interval-level outputs from both audio and
image streams are aligned and merged by the Localization Score
Fusion to generate a unified temporal localization result.

man perception and algorithmic detection[Kharel et al., 2023;
Tian et al., 2023; Yu et al., 2024; Zhang et al., 2023]. There-
fore, it is imperative to design robust, generalizable, and
multimodal-aware detection and localization systems that can
effectively identify and analyze both visual and auditory cues
of forgery.

The Deepfake Detection and Localization Challenge
(DDL-Challenge) [Miao et al., 2025; Zhang et al., 2024b;
Miao et al., 2023; Miao et al., 2024; Zhang et al., 2024a]
was launched to address these challenges. The challenge con-
sists of two tracks. Track 1 Image Detection and Localization
(DDL-I) focuses on image-level forgery detection and spatial
localization. Track 2: Audio-Visual Detection and Localiza-
tion (DDL-AV), aims to promote the development of reliable
detection and localization techniques for deepfake content,
especially under multi-modal and partially forged scenarios.



This paper specifically focuses on Track 2. In this track,
the organizers provide not only clearly defined tasks but
also a comprehensive benchmark dataset [Miao et al., 2025]
that captures the complexity and subtlety of real-world forg-
eries. The dataset is divided into training, validation, and
test sets, and includes three types of samples: (1) authen-
tic samples, where both audio and video remain untouched;
(2) fully forged samples, in which both modalities are syn-
thetically generated throughout the entire video; and (3) Par-
tially forged samples refer to videos where only a subset
of the audio and/or visual content is manipulated, rather
than the entire sequence. These manipulations may target
short segments within either or both modalities, and often
involve operations such as insertion, substitution, or blend-
ing of synthetic content [Xu et al., 2025; Yan et al., 2024;
Shiohara and Yamasaki, 2022]. In some cases, forged au-
dio and video fragments may coexist but appear at different
times, leading to subtle temporal inconsistencies—either syn-
chronized or intentionally misaligned across modalities. Such
localized and temporally dispersed alterations pose signifi-
cant challenges for detection, as large portions of the original
content remain untouched, and the overall coherence of the
media may be preserved. The dataset also spans various lev-
els of audio and video quality to reflect real-world recording
conditions. Notably, the test set contains a broader range of
sophisticated and previously unseen forgery techniques, pos-
ing a significant challenge to the generalization and robust-
ness of competing models.

To comprehensively evaluate performance, Track 2 defines
two main tasks: detection and localization. The detection
task is measured using the Area Under the Receiver Operat-
ing Characteristic Curve (AUC) [Hanley and McNeil, 1982],
reflecting the model’s ability to distinguish real from fake.
Localization performance is evaluated using Average Pre-
cision (AP) [Zhang and Zhang, 2009] and Average Recall
(AR) [Hosang et al., 2016], which assess the accuracy and
completeness of tampered segment identification. The final
score is computed as the average of detection and localiza-
tion scores, thereby ensuring a balanced and holistic evalua-
tion framework.

This paper proposes a comprehensive system designed to
address the challenge of full and partial multimodal forgeries
in videos, focusing on the detection and localization of ma-
nipulated audio and visual segments. As illustrated in Fig-
ure 1, the system consists of three modality-specific process-
ing modules and two cross-modal fusion components. The
audio stream is first processed by two separate modules: the
Audio Detection Module [Tak et al., 2022b], which outputs a
scalar score reflecting the likelihood of audio tampering at the
video level, and the Audio Localization Module [Zhong et al.,
2024], which predicts a temporal sequence of forgery proba-
bilities across the audio timeline. Simultaneously, the Image
Detection and Localization Module [Chollet, 2017] operates
on the visual stream, performing both video-level detection
and frame-wise spatial localization of manipulated content.
To enhance robustness and leverage the complementary na-
ture of audio and visual cues, we introduce two score-level
fusion mechanisms. The Detection Score Fusion aggregates
the video-level predictions from the audio and image detec-

tion branches, producing a unified deepfake detection score
for the entire video. Similarly, the Localization Score Fusion
combines the temporal prediction sequence from both audio
and image localization module, yielding integrated temporal
forgery localization intervals. This hierarchical fusion design
allows the system to effectively capture modality-specific
inconsistencies while simultaneously modeling their cross-
modal interactions, which is crucial for handling partial and
asynchronous manipulations.

2 Data Analysis
To inform the design of robust forgery detection models, we
conducted a systematic analysis of the dataset provided for
this competition. Our motivation lies in understanding the
characteristics of video data and identifying potential sources
of interference that may affect detection performance. The
analysis includes two main components:

• Statistical analysis of the distribution, proportion, and
temporal characteristics of different forgery types;

• Manual inspection of a sampled subset, including per-
ceptual assessment of video quality and inspection of
forged segments.

The dataset comprises a total of 325,975 video sam-
ples, with 200860 in the training set, 13,965 in the
validation set, and 111,150 in the test set. Table 1
shows that within the training and validation sets, au-
thentic videos (real audio real visual) account for approx-
imately 34% of the total, while fake audio real visual,
real audio fake visual, and fake audio fake visual represent
roughly 23%, 24%, and 19%, respectively.

Category Train + Val Count Proportion (%)
real audio real visual 67,348 + 4,965 34%
fake audio real visual 46,933 + 3,000 23%
real audio fake visual 48,035 + 3,000 24%
fake audio fake visual 38,544 + 3,000 19%

Table 1: Distribution of video categories in the training and valida-
tion sets.

We conducted a statistical analysis of forged segments du-
rations. Across both audio and visual modalities, we catego-
rize forged segments into four temporal intervals. As shown
in Table 2, the majority of forged segments are concentrated
within the 0-0.5 second range (57% for audio and 46% for vi-
sual), indicating a typical pattern of short-term perturbations.
Furthermore, in the fake audio fake visual category, we ob-
served several cases where audio and visual forgeries overlap.

Segment Duration (s) Audio (% of forged) Visual (% of forged)
0–0.5 57% 46%
0.5–1 21% 25%
1–2 14% 18%
>2 8% 11%

Table 2: Distribution of forged segment durations.



Additionally, nearly half of the samples contain notable
interference factors. These include significant background
noise, pure music in the background, overlapping speech
from multiple speakers, and minority languages in the au-
dio stream. Visually, some frames exhibit severe blurring or
lack discernible facial regions. As both authentic and forged
samples are affected by such disturbances, it is essential to
enhance model robustness to these unpredictable conditions.

Beyond statistical analysis, we conducted a manual inspec-
tion of 200 randomly selected forged videos, which was per-
formed independently by two annotators (i.e., the authors).
Approximately 65% of the forged audio samples exhibited
perceptible anomalies, including timbre shifts, abrupt tran-
sitions, insertion artifacts, and robotic or mechanical speech
cues. Visually, around 90% of forged samples presented clear
anomalies, such as facial distortions, global frame replace-
ments, flickering artifacts, and unnatural color filters. A por-
tion of the samples also displayed audio-visual desynchro-
nization.

In summary, key findings from our data analysis include:

• The dataset contains a large proportion of forged videos,
with real samples comprising only 34% of the train+val
set.

• Most forged segments—57% for audio and 46% for vi-
sual—are short in duration (≤ 0.5s), indicating a local-
ized manipulation pattern.

• Distortions and various forms of interference are ob-
served in both authentic and forged samples.

• Manual inspection reveals clear perceptual artifacts in a
majority of forgeries, but a small portion remains imper-
ceptible.

These findings suggest that effective forgery detection
models should emphasize short-term anomaly detection and
robustness to noisy conditions.

3 Method
3.1 Audio
3.1.1 Detection
We develop an audio-based forgery detection model trained
on the official training set using 2-second cropped audio seg-
ments with dynamic labeling. To improve robustness, we ap-
ply various data augmentation techniques during training. At
inference time, a sliding window approach with max-pooling
is used to aggregate segment-level scores into a final predic-
tion. Details of the training strategy, data augmentation, and
inference process are provided in the following subsections.

Training Strategy. We adopt Wav2Vec2.0-AASIST [Tak
et al., 2022b], as the backbone of our audio deepfake detec-
tion model, which combines the XLS-R [Babu et al., 2021]
(a multilingual Wav2Vec 2.0 variant) as the frontend feature
extractor and an AASIST [Jung et al., 2022] graph neural net-
work as the classifier. During training, we jointly fine-tune
XLS-R and train the AASIST module on the official training
set.

During training, audio is cropped into fixed 2-second seg-
ments. As shown in Table 2, nearly 92% of fake segments

fall within this duration. The 2s window strikes a balance
between temporal resolution and contextual coverage: longer
segments may dilute brief spoofed cues (typically 0.5–1s),
while shorter ones may lack sufficient context.

During audio pre-processing, we integrate a dynamic la-
beling strategy with standard waveform cropping to accom-
modate partial forgery detection. Typically, waveforms are
randomly cropped to a fixed length, with repetition applied if
the original duration is shorter. If the metadata contains an-
notated fake segments, the label of each cropped segment is
reassigned based on its overlap with forged intervals. Specif-
ically,

1. If no forged segments are annotated, the original audio
label is retained.

2. If the audio is labeled as fake and its duration is shorter
than 2s, it is repeated and cropped to the target length.
The label is set to fake (i.e., 1), since all forged content
is preserved within the repeated segment.

3. If the audio is labeled as fake and its duration exceeds
2s, it is randomly cropped. If the cropped segment over-
laps any forged interval, it is labeled as fake (i.e., 1);
otherwise, it is labeled as real (i.e., 0).

Algorithm 1 Dynamic Labeling of Cropped Audio
Input: Original waveform w; original label y ∈ {0, 1}; tar-

get length T ; forged audio segmentsM =
{[

t
(i)
s , t

(i)
e

]}N

i=1
,

where 0 ≤ t
(i)
s < t

(i)
e ≤ T

Parameters: Crop interval [ts, te], where 0 ≤ ts < te ≤ T
Output: Cropped waveform w′; updated label y′ ∈ {0, 1}

1: w′, ts, te ← PAD AND CROP(w, T )
2: ifM = ∅ then
3: return w′, y
4: else
5: if LENGTH(w) < T then
6: return w′, 1
7: else
8: for all [t(i)s , t

(i)
e ] ∈M do

9: if te > t
(i)
s and ts < t

(i)
e then

10: return w′, 1
11: end if
12: end for
13: return w′, 0
14: end if
15: end if

To address the class imbalance introduced by dynamic la-
beling, the loss function is reweighted based on the bonafide-
to-fake ratio observed in the training set. Furthermore, data
augmentation is applied prior to waveform cropping and la-
beling, as detailed in the following section.

Data Augmentation. To enhance model robustness and
mitigate the audio quality degradation discussed in Sec 2, we
applied multiple data augmentation techniques to the official
training data during model training:



• Rawboost [Tak et al., 2022a]: Consists of two indepen-
dently applied modules. (1) linear and non-linear con-
volutive noise to improve robustness against variations
from encoding, compression-decompression, and trans-
mission; (2) signal-dependent impulsive noise to simu-
late acquisition-related distortions such as clipping, de-
vice imperfections, synchronization errors, and compu-
tational limitations.

• SpecAugment [Park et al., 2019]: Applies time and fre-
quency masking to the spectrogram.

• Noise: A random noise sample from the MUSAN [Sny-
der et al., 2015] dataset is added with a SNR uniformly
sampled from 13–20 dB.

• Background music: A random sample from the MUSAN
music dataset is added with an SNR uniformly sampled
from 13–20 dB.

• Background speech: A random sample from the MU-
SAN speech dataset is added with an SNR uniformly
sampled from 13–20 dB.

During training, 50% of the samples are augmented using
one randomly selected method from the aforementioned tech-
niques, each chosen with equal probability. The remaining
50% remains unaltered.

Inference strategy. During inference, we employ a slid-
ing window inference strategy to evaluate segment-wise au-
thenticity across each audio clip. A sliding window of 2 sec-
onds with a 1-second stride is applied, such that each segment
overlaps the previous one by 1 second. If the final segment
is shorter than 2 seconds, it is padded with preceding audio
to maintain consistent input length. The clip-level score is
computed via max-pooling over all segment scores, which is
effective for detecting partially forged audio by emphasizing
the most suspicious segment.

3.1.2 Localization
We adopt a boundary-aware audio forgery localization
system, named Boundary-aware Attention Mechanism
(BAM) [Zhong et al., 2024], which integrates frame-level
detection and boundary prediction in a unified framework.
The system processes variable-length audio inputs during in-
ference while maintaining temporal precision through dedi-
cated boundary modeling. Technical implementation details
are outlined below.

Training Strategy. We implement BAM using the
WavLM-Large [Chen et al., 2022] self-supervised pre-trained
model as the front-end feature extractor, combined with two
core modules: (1) Boundary Enhancement Module (BEM)
and (2) Boundary Frame-wise Attention Module (BFAM) to
learn discriminative features for distinguishing between real
and fake frames.

• Boundary Enhancement Module: This module extracts
both intra-frame and inter-frame information to derive
discriminative boundary features. It employs a frame-
wise attention block to capture inter-frame correlations
and a 1D-ResNet for intra-frame feature learning. The
BE module outputs boundary prediction probabilities
through a fully-connected layer with a sigmoid function,

followed by threshold-based binarization. The threshold
was set at 0.5 by the original author.

• Boundary Frame-wise Attention Module: Leveraging
the boundary predictions from the BE module, this com-
ponent explicitly controls feature interactions between
frames. It employs a boundary masking component that
constructs a boundary adjacency matrix based on the
boundary prediction. This matrix is used to weaken the
message passing between frames belonging to different
intervals, thereby improving frame-level authenticity de-
cisions.

Figure 2: The overall architecture of BAM.

As illustrated in Figure 2, the raw audio signal is first
passed through a front-end feature extractor to obtain the ini-
tial acoustic features. These features are then aggregated us-
ing attention-based pooling to produce a pooled representa-
tion. The pooled features are subsequently fed into BEM and
BFAM.

Within the BEM, the features are processed to generate en-
hanced representations. These enhanced features are used in
two ways: one branch passes them through a fully connected
(FC) layer followed by a sigmoid activation to predict bound-
ary information; the other branch feeds them into a separate
FC layer with a SELU [Klambauer et al., 2017] activation to
generate features to be later concatenated with the output of
BFAM.

Meanwhile, the predicted boundary information serves as
auxiliary input to BFAM, alongside the original pooled fea-
tures. BFAM processes this combined input to produce
interval-aware interaction features. Finally, these features are
concatenated with the BEM-generated representations and
passed through a fully connected layer to produce the final
frame-level prediction results.

During training, we resample all audio data from the offi-
cial datasets from their original 44.1 kHz to 16 kHz to match
the input requirements of our model. For temporal resolution,
we adopt 40 ms (instead of the original 160 ms) to align with
the minimal forgery granularity in the dataset. Additionally,
we fix training samples at 1-second segments, which corre-
sponds to 25 frames per second (FPS), ensuring compatibil-
ity with visual-level synchronization when needed. Samples
exceeding this length are randomly trimmed, while shorter
samples are zero-padded. The data is padded to correspond
with the 20 ms shift of WavLM. The model is trained for 50
epochs using the Adam optimizer with an initial learning rate
of 1e-5, which is halved every 10 epochs. The final model
is selected based on the best validation loss observed during
training.



For joint optimization, we use a dual-objective loss func-
tion:

• Frame-level Authenticity Loss (Ls): Standard cross-
entropy loss is used for frame-level spoofing detection.

• Boundary Loss (Lb): Binary cross-entropy loss is ap-
plied, where ground-truth boundary labels are derived
from segment-level authenticity labels. Specifically,
only boundary frames are labeled as 1, while all other
frames are labeled as 0.

The overall loss function is expressed as:

L = Ls(ŷ, Y ) + λLb(b̂, B)

Where ŷ represents the authenticity prediction result of the
model, Y is the frame-level authenticity label, b̂ is the bound-
ary prediction probability, B is the ground-truth boundary la-
bel, and λ is set to 0.5.

Inference Strategy. The model processes variable-length
test samples directly, with the boundary predictions determin-
ing the final forgery localization results. All other experimen-
tal settings remain consistent with the training strategy.

3.2 Image
For the video frame branch, we adopt a frame-level detec-
tion approach that emphasizes the discriminative capacity of
individual frames. This design also serves as a foundation
for enabling the model to localize forged segments within the
video.

3.2.1 Training Strategy
Training Parameter. We adopt Xception [Chollet, 2017] as
the backbone for both detection and localization. The mod-
els are optimized using the Adam optimizer with the follow-
ing hyperparameters: weight decay = 1e−5, learning rate =
1e−4, β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. As noted in Sec.
2, the fake audio fake video subset contains a combination of
real and fake frame segments. Given time constraints, train-
ing is conducted exclusively on the fake audio fake video
subset of the dataset.

Data Augmentation. To improve the robustness of the
detection model, we apply data augmentation to the input
images with a fixed probability. The specific augmentation
strategies are as follows:

• Blur: The Gaussian kernel size is randomly chosen from
the range [3, 11].

• Masking: Random masking of semantically important
regions (e.g., facial features such as the eyes, nose, and
mouth)

• Noise: The noise variance is randomly sampled from the
range [10., 60.].

• Brightness: The brightness factor ranges from -0.3 to
0.3.

• Compression: The compression quality factor (Q) is ran-
domly selected within the range [30, 100].

• Resize: A resizing strategy is applied that sequentially
performs upsampling by a factor of 1.2, followed by
downsampling by 0.8, and then upsampling again by 1.1.

Algorithm 2 algorithm for detection
Input: video frames I = {f1, f2, ..., fn}
Parameter: model m(·), Stage I constraint c1, Stage II con-
straint c2, fake frame intervals F = {[i, j], [...], [...]}, i < j <
n, confidence score per frame pred = {s1, s2, ...sn}
Output: confidence score s

1: pred←− m(I)

2: F
IDENTIFY FAKE INTERVAL(·)←−−−−−−−−−−−−−−−−− pred

3: F ←− REVERSE SORT BY LEN(F )
4: if LEN(F [0]) ≥ LEN(I) · c1 then
5: s←− MEAN(F [0])
6: else if SUM(LEN(F [1 :])) ≥ LEN(I) · c2 then
7: s←− MEAN(F [1 :])
8: else
9: s←− MEAN(pred)

10: end if
11: return s

3.2.2 Inference Strategy
Detection. For detection, the primary challenge lies in de-
termining the authenticity of an entire video based on pre-
dictions made at the frame level. The most straightforward
approach is to assess video authenticity based on either the
proportion of frames predicted as fake or the aggregated con-
fidence scores within a sliding window. However, these sim-
ple heuristics are prone to two common pitfalls: excessive
sensitivity to isolated fake-frame predictions or an unrealistic
bias toward real predictions caused by over-smoothing.

To address this, we adopt a strategy based on the false pos-
itive rate (FPR), wherein the model’s FPR is first estimated,
and video authenticity is then determined by analyzing the re-
lationship between the proportion of frames predicted as fake
and the expected FPR.

First, if the number of consecutively forged frames ex-
ceeds the maximum number of false positives tolerable by
the model—derived from a predefined false positive rate
(FPR)—the video is classified as fake (Stage I c1). However,
this criterion primarily targets long forged intervals. As dis-
cussed in Sec. 2, many forged segments in fake videos are
relatively short (highlighting the risk of prediction smooth-
ing in sliding window–based methods), relying solely on long
forged segments may lead to missed detections of more scat-
tered manipulations.

Therefore, attention should also be paid to the relatively
sparse and short-duration segments in the prediction results.
To address this, we additionally compute the total duration of
all forged segments, excluding the longest. If the proportion
of this cumulative duration exceeds a threshold lower than the
predefined FPR, relative to the total video length, the video
is also classified as fake (Stage II c2). Only when neither
condition is satisfied is the video considered real. For detailed
algorithmic procedures, please refer to Algorithm. 2.

Localization. For localization, the frame-level design
guarantees that predictions for individual frames can be di-
rectly aggregated into localization intervals. Consequently,
no additional processing is required before fusing these re-
sults with the audio modality localization.



3.3 Fusion
3.3.1 Audio-Visual Multimodal Fusion for Detection
As noted in Sec. 2, the dataset contains cases of unimodal
forgeries. Consequently, relying on a single modality for de-
tection is insufficient to fully capture such manipulations, ne-
cessitating the fusion of both modalities.

Due to time constraints, we train the unimodal detection
module independently. During inference, each modality-
specific module produces predictions on its respective input,
and the final decision is derived through fusion. If the pre-
dictions from both modules are consistent, we average their
confidence scores. If they disagree, to compensate for the
limitations of unimodal detection, we bias the decision to-
ward predicting the video as fake and adopt the confidence
score from the modality that issued the fake prediction.

3.3.2 Audio-Visual Multimodal Fusion for Localization
Considering the limitations of using a single modality for
localization, we introduce a temporal interval-based fusion
method that effectively integrates complementary informa-
tion from both the audio and visual modalities along the video
timeline.

First, we extract all predicted boundaries from both modal-
ities and partition the entire video into a series of non-
overlapping continuous time intervals by removing duplicates
and sorting the boundaries. Each time interval corresponds to
a segment on the time axis, formally defined as:

T = {t1, t2, . . . , tK}, where t1 < t2 < · · · < tK

Ik = (tk, tk+1), k = 1, 2, . . . ,K − 1

Here, tk represents the k-th timestamp, and Ik denotes the
k-th time interval.

For each interval Ik, we check whether the audio and vi-
sual modality predictions contain segments that overlap with
it. If an overlap is found, it indicates that the corresponding
modality has detected a forged segment within that interval,
and its confidence score is assigned accordingly. If no over-
lap exists, it means the modality does not provide any valid
evidence for that interval, and the confidence score is set to
zero.

Then, we apply a max-confidence fusion strategy to com-
bine the confidence scores from the two modalities:

Cfusion(Ik) = max (Caudio(Ik), Cvisual(Ik))

where Caudio and Cvisual denote the confidence scores for the
audio and visual modalities within interval Ik, respectively.

In addition, to reduce fragmented detection results and en-
hance temporal coherence, we further merge consecutive in-
tervals with similar confidence scores. This leads to smoother
and more consistent final predictions.

4 Evaluation
4.1 Audio-Visual Multimodal Fusion for Detection
We validate the effectiveness of our method using evaluation
metrics derived from the submitted results. We first obtain
prediction results using only the audio detection module, re-
ferred to as w/o fusion. Subsequently, we fuse these results

with those from the visual detection module, denoted as w
fusion. Although the audio-only detection module achieves
satisfactory performance, it exhibits certain limitations that
impact localization accuracy. By fusing the visual detection
results, we observe a 7% increase in AUC, demonstrating that
audio-visual multimodal fusion substantially enhances video
authenticity verification. Detailed results are presented in Ta-
ble. 3.

Fusion Strategy AUC↑ AR↑ AP↑
w/o fusion 0.80 0.09 0.448
w fusion 0.872 0.23 0.551

Table 3: Impact of fusion strategy on authenticity judgment. “w/o
fusion” denotes results obtained using only the audio modality,
while “w fusion” denotes results after fusing both audio and visual
modalities. The localization strategy is kept consistent across both
cases.

4.2 Audio-Visual Multimodal Fusion for
Localization

As the precise evaluation scripts for AP and AR calculations
were not made available for this track, the fusion perfor-
mance analysis was necessarily derived from the final bench-
mark results published by the challenge organizers. Table.
4 presents the experimental outcomes of interval-wise score
fusion across different modality combinations.

We observe that fusing audio and visual modality confi-
dence scores within defined temporal intervals yields better
performance than using either modality alone. Specifically,
the combination of pre-trained audio localization and visual
localization models improves both Average Precision (AP)
and Average Recall (AR) metrics over the single-modality
baselines. Furthermore, retraining the audio localization
model with additional supervision results in a further per-
formance boost, demonstrating the value of modality-specific
fine-tuning.

In particular, under identical detection results, the fused
system using a retrained audio model and the visual model
achieves the best results, reaching an AP of 0.55 and an AR
of 0.23, which are significantly higher than those achieved by
any standalone model. This highlights the effectiveness of the
proposed interval-wise fusion strategy and its contribution to
producing more stable and accurate localization results.

5 Conclusions
In this work, we present a system developed for Track 2 of
the Deepfake Detection and Localization Challenge. Our
approach leverages different models tailored for different
modalities to address the task effectively. By employing an
interval-wise fusion strategy, we are able to fully exploit the
complementary strengths of audio and visual modalities for
both detection and localization.

While our current system adopts a modular and loosely
coupled design for flexibility and interpretability, each com-
ponent is trained and executed independently. In future
work, we plan to explore more integrated architectures that



Fusion Strategy AR AP
Audio Det. Only 0.05 0.36
Audio Loc. (Pretrained) 0.09 0.44
Image Loc. Only 0.13 0.39
Audio Loc. (Pretrained) + Image Det. 0.13 0.50
Audio Loc. (Retrained) + Image Det. 0.23 0.55

Table 4: Localization performance comparison of different fusion
strategies based on fixed detection results. Audio Det. denotes the
detection results produced by the audio module. Audio Loc. (Pre-
trained) represents the localization results produced by a temporal
audio localization model pre-trained on the PartialSpoof dataset by
its original authors. Audio Loc. (Retrained) represents the local-
ization results produced by the same model architecture retrained on
the official training set of this challenge. Image Det. denotes the
detection results produced by the image module. Image Loc. repre-
sents the localization results produced by the image module.

jointly optimize across audio and visual streams. Such unified
frameworks could reduce implementation complexity while
enabling deeper feature-level interactions between modali-
ties. We also aim to enhance the system’s ability to detect
cross-modal inconsistencies by learning shared temporal and
semantic representations. We believe these directions hold
great promise for building more efficient, scalable, and gen-
eralizable multimodal deepfake detection systems.
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