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Abstract
Most current deepfake image detection methods fo-
cus on distinguishing real from fake images but
lack the ability to accurately localize forged re-
gions, limiting their interpretability and applicabil-
ity in scenarios such as content moderation and
forensic analysis. Existing approaches primarily
rely on image features like deep or frequency-
domain representations, often ignoring the intrin-
sic patterns introduced by generator architectures.
However, these features may retain semantic con-
tent from the original image, potentially hindering
detection accuracy and generalization. We observe
that upsampling in generators induces strong cor-
relations among neighboring pixels, which are fur-
ther amplified by residual connections. Leverag-
ing this insight, we propose a Contrastive Residual
Forgery Detection Network (CRFD-Net). It em-
ploys a tailored residual structure and a local con-
trastive enhancement module to highlight abnor-
mal pixel correlations in forged areas. A U-Net-
inspired decoder enables spatial localization, while
a sliding window-based fusion strategy further re-
fines the prediction of forged regions.

1 Introduction
With the rapid advancement of AIGC technologies [Cao et
al., 2023], particularly diffusion-based generative models,
applications in image and video synthesis have grown sig-
nificantly. While these innovations bring convenience, they
also pose serious threats. AIGC enables the easy creation of
highly realistic fake content, facilitating disinformation, ma-
licious tampering, and identity fraud—raising concerns over
economic losses and societal trust [Zhao et al., 2023].

Current forged data detection methods mainly fall into
two categories: feature-based and reconstruction error-based.
Feature-based methods leverage generative model character-
istics, such as [Ma et al., 2023], which exploits the reverse
process and denoising error in diffusion models, and [Sha
et al., 2023], which performs model attribution based on
unique image features. Reconstruction-based approaches,
like [Wang et al., 2023], compare input and reconstructed im-
ages to detect forgeries, showing robustness even under un-

Figure 1: Heatmaps generated by our model.

known models. However, such methods are sensitive to the
nature of reconstruction targets; for example, a model trained
on animals may misclassify real plant images as fake due to
domain mismatch.

Recent deep learning-based methods have made notable
progress in localizing forged regions [Hu et al., 2020; Park
et al., 2018; Wu et al., 2019a; Yang et al., 2020; Zhou et
al., 2018]. However, they often struggle in real-world sce-
narios due to the wide variety of forgery techniques, includ-
ing generation, insertion, deletion, cloning, and replacement.
Existing approaches typically use shared architectures and
project diverse forgeries into a unified feature space, neglect-
ing forgery pattern diversity and thus limiting generalization.

Although current methods have made encouraging
progress in forged image detection and localization, they still
face challenges such as limited generalization and low lo-
calization accuracy under complex and diverse forgery pat-
terns. In particular, the upsampling operations commonly
found in generative models introduce abnormal local correla-
tions—phenomena that have not been fully modeled or lever-
aged by existing methods.

To address the limitations of existing methods, we propose
a Contrastive Residual Forgery Detection Network (CRFD-
Net), designed to capture abnormal local correlations in gen-
erated images. A residual structure and a local contrastive en-



hancement module are introduced to amplify pixel similarity
differences in forged regions, improving sensitivity to forgery
traces. We adopt a U-Net-inspired decoder and a sliding win-
dow fusion strategy to enhance localization across varying
scales and resolutions. Our main contributions are:

• A local contrastive mechanism is proposed to capture
subtle yet consistent pixel correlations in forged regions,
enhancing detection robustness.

• A sliding window fusion strategy is designed to reduce
boundary artifacts and improve localization of small or
dispersed forgeries.

• Our method achieves top performance in the IJCAI
Forgery Detection Challenge, demonstrating strong gen-
eralization and practical value.

2 Related Work
2.1 Image Forgery Detection
Early research primarily extracted spatial clues such as edge
blending [Li et al., 2020], color [McCloskey and Albright,
2018], and saturation [McCloskey and Albright, 2019]. How-
ever, as image generation technologies evolve, traditional
spatial features have become less effective. Compression
during image transmission further degrades quality, making
forgery traces harder to detect. To address this, researchers
turned to frequency-domain methods, introducing approaches
based on scale [Wang et al., 2022b], frequency bands [Li et
al., 2021], and adaptive feature extraction [Qian et al., 2020].
While effective on compressed images, these methods still
struggle with unseen forgery techniques.

Most existing methods target GAN-generated images. Al-
though Corvi et al. [Corvi et al., 2023a; Corvi et al., 2023b;
Ricker et al., 2022] observed spectral artifacts in diffusion-
generated images, detection methods based on such artifacts
remain limited in effectiveness. To address this, recent ap-
proaches shift focus to features from the diffusion process it-
self. For example, DIRE [Sha et al., 2023] and SeDIE [Wang
et al., 2023] leverage reconstruction errors, while LaRE2
[Luo et al., 2024] and AEROBLADE [Ricker et al., 2024]
explore errors in latent space. DRCT [Chen et al., 2024] em-
ploys four reconstruction types and uses contrastive loss to
train a classifier.

However, these methods heavily rely on pre-trained recon-
struction models, making them vulnerable to the limitations
of the training data. For instance, if the reconstruction model
is trained on a specific category (e.g., cats) but is used to de-
tect forgeries from different categories (e.g., dogs or plants),
misclassifications may occur. The core issue lies in using re-
construction error as the primary detection signal, without
deeply leveraging the characteristics of the diffusion gener-
ation mechanism itself, thereby limiting the understanding of
the generative patterns behind forged images.

2.2 Image Forgery Region Localization
Current image forgery localization methods typically detect
and localize forgeries by identifying inconsistencies or dif-
ferences between forged and authentic regions. These meth-
ods often rely on feature extractors to capture forgery-related

cues, such as RGB noise [Cozzolino and Verdoliva, 2019],
[Guillaro et al., 2023], high-frequency features [Kwon et
al., 2022; Wang et al., 2022a], or edge artifacts [Dong et
al., 2022; Zhou et al., 2020]. For example, [Cozzolino and
Verdoliva, 2019] and [Guillaro et al., 2023] extract low-
level forgery traces from camera model fingerprints; ManTra-
Net [Wu et al., 2019b] uses both BayarConv and SRM as
noise extractors to obtain rich features; CAT-Net [Kwon et
al., 2022] leverages Discrete Cosine Transform (DCT) coef-
ficients to localize tampered regions; ObjectFormer [Wang
et al., 2022a] captures subtle forgery traces by combining
high-frequency and RGB features; TruFor [Guillaro et al.,
2023] integrates high-level semantic features from RGB im-
ages with noise-sensitive fingerprint features for forgery lo-
calization.

In addition, many methods utilize edge artifacts for forgery
region detection. For instance, GSR-Net [Zhou et al., 2020]
introduces edge detection and refinement branches to bet-
ter recognize boundary artifacts; MVSS-Net [Dong et al.,
2022] designs an edge supervision branch that progressively
extracts fine-grained boundary information from shallow to
deep layers.

However, most existing methods adopt a unified feature
extractor to handle all types of forged images, without fully
considering the significant visual differences across various
forgery patterns. This limits their generalization ability in
diverse forgery scenarios. Moreover, these methods often
over-rely on global or single-scale features, making it diffi-
cult to accurately capture subtle structural anomalies around
the boundaries of forged regions, which negatively impacts
localization precision.

In light of these challenges, this paper proposes a Con-
trastive Residual Forgery Detection Network (CRFD-Net),
designed to more sensitively perceive and localize forgery
traces in images. Starting from the observation that gen-
erative models introduce structural defects during the up-
sampling process — notably, significant pixel correlations in
neighborhood regions — we design a residual enhancement
module and a local contrast mechanism to effectively amplify
and capture these micro-level forgery features.

3 Method
This study proposes a forgery localization method called the
Contrastive Residual Forgery Detection Network (CRFD-
Net). As shown in the figure, the overall architecture consists
of two main functional modules:

• Contrastive Residual Feature Encoder: To address the
neighborhood correlation introduced by upsampling op-
erations, a contrastive enhancement module is designed.
This module amplifies the anomalous relationships be-
tween pixels in forged regions through a local con-
trastive mechanism and residual connections, enabling
the extraction of low-level forgery features from images.

• Symmetric U-Net Decoder: Inspired by the skip con-
nection design in the U-Net architecture, this decoder
fuses low-level detailed information with high-level se-
mantic information. It effectively reconstructs the spa-



Figure 2: Architecture of the proposed CRFD-Net. The model integrates a feature encoder, a contrastive residual module to enhance anoma-
lous correlations in upsampled regions, and a U-Net-like decoder with sliding window fusion for precise localization of forged areas.

tial distribution of forged regions and generates pixel-
level forgery masks.

3.1 Contrastive Residual Feature Encoder
To improve the model’s sensitivity to subtle and localized
tampering traces in forged images, we design a Contrastive
Enhancement Module (CEM) as a preprocessing step. This
module extracts high-frequency residual information from the
input image through dual interpolation operations:

CEM(x) = x− Upsample(Downsample(x)) (1)

Both the upsampling and downsampling operations are im-
plemented using nearest-neighbor interpolation, aiming to
preserve edge details and local perturbations. Ultimately, the
residual signals are scaled to enhance the influence of subtle
differences on the downstream network.

Residual Feature Extraction Module The core net-
work adopts the standard ResNet framework, consisting of
two groups of residual structure modules—BasicBlock1 and
BasicBlock2—each formed by stacking multiple residual
units. Within each residual unit, skip connections are em-
ployed to implement identity mappings of features, effec-
tively alleviating the vanishing gradient problem and enhanc-
ing the model’s generalization ability. The number of con-
volution channels increases progressively across layers to ex-
tract higher-order semantic features from images.

Global Semantic Aggregation and Prediction After deep
feature extraction, the final output feature map is compressed
into a 1 × 1 global vector through adaptive average pooling.
This operation performs spatial averaging of features while
preserving deep semantic information across channels.

3.2 Symmetric U-Net Decoder
We designed an improved decoder module aimed at generat-
ing high-quality semantic segmentation results through multi-
scale feature fusion and progressive upsampling. Inspired by

the U-Net architecture, this module incorporates skip con-
nections to retain low-level spatial information, and fuses
deep semantic features with shallow spatial details to improve
segmentation accuracy. It combines transposed convolutions
with bilinear interpolation to gradually restore the spatial res-
olution of feature maps and minimize information loss.

The decoder takes three feature maps of different scales
as input: A high-resolution feature map x1 from the shal-
low layer, a medium-resolution feature map x2 from the mid-
dle layer, and a low-resolution feature map x3 from the deep
layer.

First, the deep feature map x3 is upsampled to match the
spatial size of the intermediate feature map x2, followed by
feature fusion:

x
′

3 = ReLU(BN(ConvT(x3))) (2)

x
′′

3 = Interpolate(x
′

3, size = x2.size) (3)

xfusion1
= ReLU(BN(Conv(Concat(x

′′

3 , x2)))) (4)

Next, the fused feature map xfusion1 is upsampled to match
the spatial resolution of the shallow feature map x1, followed
by feature fusion:

x
′

fusion1
= ReLU(BN(ConvT(xfusion1

)) (5)

x
′′

fusion1
= Interpolate(x

′

fusion1
, size = x1.size) (6)

xfusion2
= ReLU(BN(Conv(Concat(x

′′

fusion1
, x1)))) (7)

The fused feature map xfusion2
is projected to the category

space through a 1×1 convolution, and then upsampled to the
target resolution:

xout = Conv1×1(xfusion2
) (8)

xseg = Interpolate(xout, size = target.size) (9)



3.3 Data Preprocessing
Training Phase During the training phase, the window size
is set to P × P , and each slide moves P pixels. Given an in-
put image with height H and width W , the sliding starts from
the top-left corner and proceeds with a stride of S, traversing
all possible window positions. For each position (x, y), an
image patch of size P × P is extracted. For each extracted
image patch patch(x, y), the corresponding binarized mask
patch is mask(x, y). The image patch is retained only if
the mask patch contains foreground pixels (i.e., pixels with
a value of 255). Through the above steps, multiple local re-
gions containing forgery annotations are extracted from the
original image, providing sample data for subsequent model
training.

Testing Phase In the testing phase, to reconstruct a com-
plete mask image from the predicted image patches, we adopt
a sliding window–based overlapping region fusion method.
Let the size of the reconstructed image be H × W . We ini-
tialize two matrices of the same size: Accumulation map
A ∈ RH×W : used to store the sum of prediction values at
each pixel position; Count map C ∈ RH×W : used to record
how many times each pixel position has been predicted.

For each predicted patch Pk and its starting coordinates
(xk, yk) in the original image, we add the predicted values
to the corresponding positions in the accumulation map, and
increment the values in the count map at the same positions
by one:

Ai,j+ = Pk(i− yk, j − xk),∀i ∈ [yk, yk + p) (10)
Ci,j+ = 1,∀i ∈ [yk, yk + p) (11)

where p denotes the size of the image patch. To obtain
the average predicted value at each pixel position, compute
Mi,j =

Ai,j

Ci,j

Then, apply thresholding to the values in the average pre-
diction map M to generate the binary mask image B:

Bi,j =

{
255, if Mi,j > 0.5

0, otherwise

Finally, crop B to match the original image size of H ×W .

3.4 Real vs. Fake Image Classification
The Binary Cross-Entropy (BCE) Loss is adopted, which is
suitable for binary classification tasks. In forgery region de-
tection, it effectively measures the difference between pre-
dicted probabilities and ground truth labels. For an image
with N pixels, the BCE loss function is defined as:

BCE = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (12)

where yi ∈ {0, 1} is the ground truth label for the i-th pixel
(0 for background, 1 for foreground), and pi ∈ (0, 1) is the
predicted probability that the i-th pixel belongs to the fore-
ground. N is the total number of pixels in the image.

To effectively distinguish between real and forged images,
we propose a detection strategy based on the proportion of
forged regions. This method calculates the proportion of the

image detected as forged and compares it with a predefined
threshold to determine whether the image is forged.

For each input image, a corresponding binary mask image
M ∈ {0, 255}H×W is first generated by the forgery localiza-
tion model, where H and W represent the height and width
of the image, respectively. In the mask image, a pixel value of
255 indicates that the position is detected as part of a forged
region, while 0 indicates it is not.

The proportion p of the forged region in the entire image is
calculated as follows:

p =

∑H
i=1 I[Mi,j = 255]

H ×W

Here, I is an indicator function, which takes the value 1 when
the condition is true, and 0 otherwise.

To set a reasonable decision threshold θ, we analyze the
distribution of the forgery region proportions on the valida-
tion set for both real and forged images.

Let pmax
real be the maximum forgery region proportion among

all real images in the training set; pmin
fake be the minimum

forgery region proportion among all forged images in the
validation set. Then, the decision threshold θ is set as
θ =

pmax
real +pmin

fake
2 . This approach ensures that the threshold lies

between the distribution ranges of real and forged images,
which helps improve classification accuracy. For a test image,
if its forgery region proportion p satisfies p > θ, the image is
classified as forged; otherwise, it is classified as real.

Let the sliding window be of size p× p and stride s. Then
the number of windows in the horizontal and vertical direc-
tions is Nh =

⌊
H−p
s

⌋
+1, Nw =

⌊
W−p

s

⌋
+1. Therefore, the

total number of windows is N = Nh ×Nw ≈ H·W
s2 , and the

resulting time complexity of the sliding-window procedure is
O
(
H·W
s2

)
.

4 Experiment
In the first part of this section, we present our detailed exper-
imental setup. In the second part, we evaluate and compare
CRFD-Net against other forgery detection methods, includ-
ing state-of-the-art approaches. Finally, we conduct an abla-
tion study on our proposed model.

4.1 Experimental Setup
Dataset and Evaluation Metrics All experiments are con-
ducted on the public DDL-I dataset from the IJCAI challenge,
designed for both deepfake detection and forged-region lo-
calization. It includes 1.2 million face images across Real,
Fake, and Mask subsets, supporting joint classification and
segmentation tasks. Each fake image has a pixel-level an-
notated mask, enabling precise evaluation of boundary and
small-region localization. DDL-I covers single and multi-
face “in-the-wild” scenes and incorporates 61 forgery gen-
erators, including face swapping, reenactment, and editing,
to ensure broad generalization and robustness. Real and fake
images are labeled 0 and 1 respectively, with 400K masks
matching 400K fake images.

During training, we supervise the localization branch with
both fake images and their masks. At evaluation time, we



Method Year AUC F1

AIDE 2024 91.84 74.91
DRCT 2024 92.03 72.73
NPR 2024 94.27 75.98
CRFD-Net (Ours) - 97.61 78.05

Table 1: Classification Performance Evaluation (values in %) on dif-
ferent methods.

Method Year IoU AUC F1

AdaIFL 2024 68.02 95.73 76.42
FLTNet 2024 70.39 94.52 79.71
CRFD-Net (Ours) - 72.8 97.61 78.05

Table 2: Localization Performance Evaluation (values in %) on dif-
ferent methods.

use classification accuracy (ACC) and area under the ROC
curve (AUC) for the Real vs. Fake task, and intersection over
union (IoU) plus boundary-F1 score to assess pixel-level lo-
calization quality by comparing predicted masks against the
ground truth.

Implementation Details All training was conducted on an
Ubuntu 22.04 workstation equipped with an NVIDIA RTX
A6000 GPU. The software environment comprises Python
3.10 and PyTorch 2.7.0 (CUDA 12.6/cu126). We employ the
Adam optimizer with an initial learning rate of 1× 10−4 and
a batch size of 4, training for 100 epochs. The loss function
is binary cross-entropy with class-balancing weights to fur-
ther sharpen forged-region detection precision. The inference
time per 126× 126 image is approximately 2.88 ms.

4.2 Comparison with State-of-the-Art Methods
Classification Performance Evaluation In our compara-
tive experiments, CRFD-Net surpasses prior state-of-the-art
methods in both AUC and F1. The results are showed in
Table 1. Specifically, it raises AUC from NPR’s 94.27% to
97.61%, showing better overall discrimination and robustness
to diverse forgery artifacts. For F1, CRFD-Net improves from
75.98% to 78.05%, highlighting stronger pixel-level localiza-
tion with fewer misses and false alarms.

These gains result from two key innovations: a contrastive
residual module that amplifies upsampling-related anomalies,
and a sliding-window fusion strategy that enhances boundary
precision and small-region detection. Together, they make
CRFD-Net highly effective for deepfake detection and local-
ization.

Localization Performance Evaluation In our study,
CRFD-Net achieves the highest IoU at 72.85%, surpass-
ing FLTNet (70.39%) and AdaIFL (68.02%). The results
are showed in Table 2. This 2.46-point gain over FLT-
Net confirms that our contrastive enhancement and sliding-
window strategies effectively improve localization, particu-
larly in small and boundary regions.

For classification, AdaIFL and FLTNet reach AUCs of
95.73% and 94.52%, respectively, while CRFD-Net sets a

Threshold Strategy AUC F1 Precision Recall

prealmax 94.83 74.62 78.26 71.31
pfakemin 95.54 75.69 71.39 80.54

(prealmax + pfakemin )/2 97.61 78.05 77.76 78.34

Table 3: Comparison of threshold strategies on model performance
(values in %).

new benchmark at 97.61%, maintaining high recall with
fewer false positives across diverse forgery types.

In terms of F1, CRFD-Net scores 78.05%, outperforming
AdaIFL (76.42%) and slightly trailing FLTNet (79.71%), as
our method favors fine-grained localization, potentially trad-
ing off recall in larger forgeries. Overall, CRFD-Net demon-
strates strong performance in both detection and localization
tasks.

4.3 Ablation Study
Forgery Detection Threshold
To validate the proposed threshold θ =

preal
max+pfake

min

2 , Table
3 compares the performance of three threshold strategies in
terms of IoU, AUC, Precision, and Recall. prealmax is the max-
imum proportion of falsely detected forgery regions in gen-
uine training images; pfakemin is the minimum proportion of cor-
rectly detected forgery regions in forged training images; θ
represents the midpoint between these two extremes.

Adopting prealmax as the threshold yields high precision but
relatively low recall, indicating a conservative decision rule
that misses many forgery regions. Conversely, using pfakemin in-
creases recall at the expense of precision, reflecting a more
aggressive threshold that produces more false positives. In
contrast, the midpoint threshold θ achieves the highest AUC
and F1 scores and balances precision and recall. This aligns
with the general precision–recall trade-off observed across
thresholds. Overall, these results confirm that θ =

preal
max+pfake

min

2
provides an optimal compromise between detection accuracy
and coverage.

Generalization Across Generator Families
To evaluate the generalization ability of the proposed method
across different forgery techniques, we tested CRFD-Net on
various types of forged datasets. These include the GAN-
based FFHQ [Karras et al., 2020], the diffusion-based DIRe-
CelebA-HQ [Wang et al., 2023], and the face-swap-based
DeepFakes [Li et al., 2019]. We computed both classifica-
tion and localization metrics, including AUC, F1, Precision,
and Recall. As shown in Table X, for the GAN-based dataset
FFHQ, CRFD-Net achieved the highest AUC and F1 scores,
indicating excellent accuracy and stability in detecting tradi-
tional GAN-generated images. For the diffusion-based DIRe-
CelebA-HQ, the model’s performance was slightly lower
than on the FFHQ dataset but still remained at a high level.
In the case of the face-swap-based DeepFakes dataset, al-
though there was a minor performance drop, the results were
still significantly better than random, demonstrating that the
proposed forgery cues remain effective in real-world face-
swapping scenarios. Despite the differences in generation



Generator Type AUC F1 Precision Recall

FFHQ 98.46 81.71 80.76 82.70
DIRe-CelebA-HQ 97.80 80.03 78.45 81.67

DeepFakes 95.98 73.62 72.81 74.45

Table 4: Performance comparison across generator types (values in
%).

Configuration AUC F1 IoU Time (s) GPU (GB)

CRFD-Net 97.61 78.05 72.80 28.8 ± 1.1 28.2
w/o CEM 90.83 68.53 64.53 28.8 ± 1.0 28.2
w/o Residual 96.17 74.84 68.06 27.5 ± 1.2 26.6
w/o SWF 95.26 73.21 68.21 22.3 ± 0.9 25.3

Table 5: Comparison of performance and resource consumption un-
der different component configurations. Each input image size is
126×126.

mechanisms and forgery traces among various generators,
our method consistently achieves high detection performance
across all types.

Component Effectiveness and Efficiency
Table 5 presents a comparison of CRFD-Net and its ablated
variants in terms of performance and resource consumption.
The complete model achieves the best results across all met-
rics, demonstrating the effectiveness of the proposed archi-
tecture. Removing the CEM leads to a significant perfor-
mance drop, with AUC and F1 scores decreasing by approx-
imately 7%, highlighting the crucial role of the context en-
hancement module in improving the discrimination of forged
regions. Although removing the residual connections or the
sliding window fusion (SWF) slightly reduces resource con-
sumption, it also causes noticeable declines in F1 and IoU
scores, indicating their importance in facilitating information
flow and refining spatial boundaries. Overall, the full model
integrates these components effectively to achieve an optimal
balance between performance and efficiency.

5 Conclusion
This paper proposes a novel Contrastive Residual Forgery
Detection Network (CRFD-Net) designed to enhance both the
interpretability and localization accuracy in deepfake image
detection. Unlike conventional methods that primarily focus
on binary authenticity classification, CRFD-Net emphasizes
fine-grained localization of forged regions, addressing the
core limitation of poor explainability in current forgery de-
tection systems. By introducing a dedicated residual structure
and integrating a local contrastive enhancement mechanism,
the model effectively amplifies abnormal correlations among
neighboring pixels in forged areas, thereby improving its sen-
sitivity to forgery traces. Combined with a U-Net-like de-
coder and a sliding window-based prediction fusion strategy,
CRFD-Net achieves dual improvements in both localization
and classification tasks. Experimental results demonstrate
that the proposed method consistently outperforms state-of-

the-art approaches across multiple metrics, exhibiting strong
robustness and generalization capabilities. Looking forward,
CRFD-Net holds significant potential for practical applica-
tions that demand high-precision localization, such as content
moderation and forensic analysis.
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