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Abstract
The proliferation of generative models has raised
serious concerns about visual content forgery. Ex-
isting deepfake detection methods primarily target
either image-level classification or pixel-wise local-
ization. While some achieve high accuracy, they
often suffer from limited generalization across ma-
nipulation types or rely on complex architectures.
In this paper, we propose Loupe, a lightweight
yet effective framework for joint deepfake detec-
tion and localization. Loupe integrates a patch-
aware classifier and a segmentation module with
conditional queries, allowing simultaneous global
authenticity classification and fine-grained mask
prediction. To enhance robustness against dis-
tribution shifts of test set, Loupe introduces a
pseudo-label-guided test-time adaptation mecha-
nism by leveraging patch-level predictions to su-
pervise the segmentation head. Extensive experi-
ments on the DDL dataset demonstrate that Loupe
achieves state-of-the-art performance, securing the
first place in the IJCAI 2025 Deepfake Detection
and Localization Challenge with an overall score of
0.846. Our results validate the effectiveness of the
proposed patch-level fusion and conditional query
design in improving both classification accuracy
and spatial localization under diverse forgery pat-
terns. The code is available at https://github.com/
Kamichanw/Loupe.

1 Introduction
Recent progress in generative AI [Croitoru et al., 2023;
Shuai et al., 2024; Zhan et al., 2023] has greatly enhanced the
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capability to produce high-quality, realistic images, thereby
facilitating the creation of content that closely mimics the real
world. However, these technological advances also raise sig-
nificant concerns about potential malicious misuse, particu-
larly in the fabrication of deceptive content aimed at mislead-
ing the public or altering historical narratives. In response to
these risks, the computer vision community has been actively
developing advanced deepfake detection methods. Contem-
porary methods [Lin et al., 2024a; Yan et al., 2023] primar-
ily focus on evaluating the authenticity of the entire image
(i.e., real or forged), while there is also an emerging subset
dedicated to localizing tampered regions [Guo et al., 2023;
Li et al., 2024].

Specifically, earlier approaches relied on visual networks
(e.g., CNNs and ViTs) [Pei et al., 2024; Guo et al., 2023;
Li et al., 2024] or frequency-domain analysis [Pei et al.,
2024; Kwon et al., 2022; Tan et al., 2024] to extract fea-
tures characteristic of images generated by GANs or diffu-
sion models, aiming to detect or localize forgeries. How-
ever, these methods are typically architecturally complex and
domain-specific, often exhibiting limited generalization to
images produced by different generation techniques [Pei et
al., 2024; Lin et al., 2024b]. On the other hand, recent stud-
ies have leveraged vision-language models (VLMs) [Huang
et al., 2024; Kang et al., 2025], which simultaneously en-
able forgery detection and localization while offering inter-
pretability, and have demonstrated strong performance. Nev-
ertheless, the substantial computational resources required by
VLMs constrain their practical deployment. Therefore, it is
critical to develop a method that is computationally efficient,
structurally simple, and capable of generalizing across vari-
ous forgery techniques.

In this paper, we propose Loupe, a novel framework for
image forgery detection and forged region localization, de-
signed to simultaneously perform authenticity classification
and precise localization of tampered regions. Loupe inte-
grates an image encoder, a classifier, and a segmenter, jointly
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modeling both authenticity verification and forgery localiza-
tion tasks. To address the challenge of poor cross-domain
generalization, we aim to introduce supervision signals at test
time for dynamic adaptation. We note that image-level clas-
sification is generally less complex than pixel-wise segmen-
tation, meaning the classification head often achieves better
performance. Fortunately, with the advancement of large-
scale visual pretraining, state-of-the-art vision backbones can
be directly applied to dense prediction tasks without the
need for complex segmentation networks [Bolya et al., 2025;
Tschannen et al., 2025; Oquab et al., 2023; Kerssies et al.,
2025]. Therefore, in our classifier, in addition to the tradi-
tional full-image prediction, we incorporate patch-wise pre-
dictions, resulting in a low-resolution mask prediction. This
mask prediction can be used as a pseudo-label during test-
ing, serving as a supervision signal to guide the segmenter.
Additionally, patch-wise predictions can be combined with
the traditional full-image predictions to yield the final result.
This fusion strategy enhances the robustness and reliability of
the image-level prediction.

We evaluate the effectiveness of Loupe on the DDL
dataset [Organizers, ]. On the validation set, the classifica-
tion AUC reaches 0.946, while the segmentation IoU and F1
score attain 0.880 and 0.886, respectively. On the test set,
the classification AUC reaches 0.963, and the segmentation
IoU and F1 score are 0.756 and 0.819, respectively. Notably,
the test set exhibits a mild distribution shift, containing some
forgery techniques not present in the training set. Despite
this, Loupe demonstrates robust performance, affirming the
effectiveness of both the framework itself and the proposed
test-time adaptation method.

2 Method
The overall architecture of Loupe is illustrated in Fig 1, com-
prising three primary components: the Image Encoder, the
Classifier, and the Segmenter (comprising a Conditional Pixel
Decoder and a Mask Decoder). The training process is con-
ducted in two stages. Initially, the Image Encoder is frozen
while the classification head is trained. In the second stage,
the segmentation head is trained, still with the encoder frozen.
The methodological details of each stage are presented in
Sec 2.1 and Sec 2.2. Subsequently, Sec 2.3 describes how
Loupe is employed for test-time adaptation.

2.1 Stage 1: Classification
In the first stage, we train the classification head to determine
whether an input image is authentic or forged. Given an im-
age I ∈ R3×H×W , where H and W represent the height
and width of the image, respectively, the image is first pro-
cessed by an image encoder to produce feature representa-
tions F16 ∈ RH/16×W/16×D, where D denotes the output di-
mension of the image encoder, and we assume that the patch
size of the image encoder is 16. The resulting feature map F
is then passed to a patch-aware classifier.

The architecture of the patch-aware classifier is illustrated
in Fig 2a. It begins with a pooling layer that aggregates global
information from the entire image. This pooled representa-
tion is then passed through a multi-layer perceptron (MLP)

to produce a global prediction. On the other hand, a sepa-
rate MLP processes each image token individually to yield
local predictions. Finally, a simple linear layer fuses both the
global and local predictions to generate the final output ŷ.

In the image authenticity classification task, the number
of forged patches is often substantially smaller than that of
authentic patches. To mitigate the issue of class imbal-
ance—where the majority class may dominate the learning
process—we employ the poly focal loss Lpatch [Leng et al.,
2022] as the supervision objective of patch prediction:

Lpatch =
1

N

N∑
i=1

[
−α(1− pi)

γ log(pi) + ϵ(1− pi)
γ+1

]
.

(1)
Here, N = H/16 ×W/16 is the number of total patches, pi
denotes the predicted probability for the forged class at patch
i, α and γ are the focal loss coefficients, and ϵ is a scaling fac-
tor for the polynomial term. This formulation encourages the
model to focus more on hard or underrepresented samples.

In addition, the global prediction is supervised using the
standard binary cross-entropy loss Lglobal. The final classifi-
cation loss is defined as the sum of the patch-level and global
losses:

Lcls = Lpatch + Lglobal. (2)

2.2 Stage 2: Segmentation
In the second stage, we train the segmentation head to pre-
dict pixel-wise masks. Following DetVit [Li et al., 2022],
we apply a lightweight feature pyramid network (FPN) to
the feature map F16 output by the image encoder, extracting
multi-scale features at resolutions 1/4, 1/8, 1/16, and 1/32, re-
sulting in {F4,F8,F16,F32}, where Fi ∈ RD×Hi×Wi . For
segmentation prediction, we adopt the Mask2Former [Cheng
et al., 2022] architecture. As the first step, to enhance the
features, we employ a modified pixel decoder, referred to as
the Conditional Pixel Decoder. In the ith layer, the feature
map Fi ∈ {F4,F8,F16,F32} is refined using multi-scale
deformable attention (MSDA), outputting processed features
F̃i. This process enables adaptive aggregation of information
across multiple spatial resolutions while maintaining compu-
tational efficiency.

To support the pseudo-label-guided test-time adaptation in-
troduced in Sec 2.3, the features output by MSDA are further
processed through a cross-attention layer, where they inter-
act with conditional queries, as illustrated in Fig 2b. These
conditional queries not only guide the spatial aggregation but
also incorporate high-level semantic information, allowing
the subsequent mask decoder to produce semantically mean-
ingful and spatially precise masks. In this process, the multi-
scale features are transformed into a representation that is
both resolution-consistent and semantically enriched.

The structure and training procedure of the mask decoder
are consistent with those used in Mask2Former. Similar to
patch classification in Sec 2.1, we supervise segmentation
classification using poly focal loss instead of the standard bi-
nary cross-entropy. To further mitigate the issue of the model
overly predicting authentic regions (e.g., false negatives), we
adopt the Tversky loss Ltversky [Salehi et al., 2017] as an aux-
iliary objective:
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Figure 1: The framework of Loupe. Loupe consists of three main components: the image encoder, the classifier, and the segmenter. The
image encoder is a vision backbone based on the ViT architecture. The classifier, which builds upon the traditional full-image prediction,
extends it by adding patch-wise predictions. The segmenter follows the same meta-architecture as Mask2Former, with a key modification in
the pixel decoder. The unchanged components are represented by blocks colored in light blue.
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Figure 2: (a) The detailed structure of the patch-aware classifier.
In addition to the conventional token prediction after pooling, Loupe
also predicts the authenticity of each individual patch. (b) The ar-
chitecture of a conditional pixel decoder layer. Loupe introduces
a cross-attention layer between the deformable self-attention and the
feed-forward network, which facilitates interaction with the condi-
tional queries. For simplicity, residual connections and layer nor-
malization are omitted.

Ltversky = 1− TP
TP + α · FP + β · FN

, (3)

where TP, FP, and FN denote the number of true positives,
false positives, and false negatives, respectively. The coeffi-
cients α and β allow control over the penalty for FP and FN,
enabling a trade-off between precision and recall. In our ex-
periments, we set α = 0.3 and β = 0.7 to prioritize recall
and reduce missed detections of forged regions.

The overall loss function is formulated as:

Lseg = λ1Lmask + λ2Ltversky + λ3Lbox, (4)

where Lmask is the classification loss that uses poly focal loss
to handle the class imbalance, giving more importance to the
minority class (forged regions). Lbox is the bounding box
loss, where Hungarian matching is used to optimally assign
predicted bounding boxes to the ground-truth forged regions,
ensuring spatial consistency in the predicted forged areas.

2.3 Pseudo-Label-Guided Adaption
As discussed in Sec 1, previous forgery detection methods
often lack generalization, making it difficult to apply them
in real-world scenarios with out-of-distribution (OOD) data.
Thus, investigating the application of trained models during
testing is a critical challenge. To address this challenge, we
propose a method for introducing supervision signals into the
segmentation framework during testing.

To achieve this, during the training of Stage 2, we define
two learnable embeddings to represent the two semantic cat-
egories: “authentic” and “forged”. Based on the true labels,
the corresponding embedding is selected to interact with the
image features Fi in the conditional pixel decoder. During
testing, we use the final output of the classifier as a pseudo-
label, interpolating between the two semantic embeddings
to provide additional conditions for the pixel decoder. The
patch-level prediction results are treated as a low-resolution
mask, which is subsequently passed into the mask decoder
for supervision.

3 Experiments
3.1 Setup
Dataset and evaluation. We trained and evaluated Loupe
on the DDL dataset[Miao et al., 2025], which comprises both
real/fake classification and spatial localization tasks. The



Table 1: Leaderboard of the IJCAI 2025 Deepfake Detection and
Localization Challenge. The overall score is computed as the aver-
age of AUC, F1, and IoU.

Rank AUC F1 IoU Overall
1 (ours) 0.963 0.756 0.819 0.846

2 - - - 0.8161
3 - - - 0.8151
4 - - - 0.815
5 - - - 0.815

Table 2: Ablation on patch prediction.

AUC
Loupe (ours) 0.946
– patch prediction 0.920

dataset includes over 1.5 million images, covering 61 manip-
ulation techniques, such as single-face and multi-face tamper-
ing scenarios. For evaluation, we used Area Under the ROC
Curve (AUC) for detection, F1 Score, and Intersection over
Union (IoU) for spatial localization (IoU is calculated exclu-
sively for fake samples) as our metrics.

Implementation details. We use the Perception En-
coder [Bolya et al., 2025] as our image encoder. For the
segmenter, most architectural parameters of the pixel de-
coder and mask decoder are kept consistent with those in
Mask2Former [Cheng et al., 2022], except that we set the
number of learnable queries to 20. Each training stage runs
for one epoch, using the AdamW optimizer. To adjust the
learning rate, we adopt the warmup stable decay sched-
uler [Hu et al., 2024], where the first 10% of the training steps
are used for warmup and the final 10% for learning rate decay.
More hyper-parameters are listed in Appendix A.

3.2 Results
Loupe secured first place in the IJCAI 2025 Deepfake Detec-
tion and Localization Challenge[Zhang et al., 2024a; Zhang
et al., 2024b; Miao et al., 2024; Miao et al., 2023]. The top
five entries on the leaderboard are shown in Table 1. Our
method achieved an overall score that was 0.03 higher than
the second-place entry, while the scores from second to fifth
place differed by less than 0.001.

On the validation set, Loupe achieved a classification
AUC of 0.947, and segmentation IoU and F1 scores of
0.880 and 0.886, respectively. Despite a slight distribution
shift in the test set compared to the training and validation
data, Loupe—particularly in classification AUC—remained
largely unaffected, indicating the robustness of our approach.

3.3 Ablation Study
We conduct a series of ablation studies on the validation set of
the DDL dataset to evaluate the effectiveness of our proposed
method.

Patch-aware classifier. We validate the importance of
patch-wise prediction by removing it. As shown in Table 2,

Table 3: Ablation on conditional queries of our modified pixel de-
coder and training objectives.

F1 IoU
Loupe (ours) 0.880 0.886
– conditional queries 0.870 0.874

the patch-wise prediction yields a significant improvement
over the conventional global-only method, demonstrating the
effectiveness of the local-global fusion strategy.

Conditional pixel decoder. Table 3 shows that Loupe ben-
efits from our proposed conditional queries. By conditioning
the image features with semantic embeddings before they are
fed into the mask decoder, this approach not only enables test-
time adaptation but also enhances the semantic alignment be-
tween the predicted masks and the underlying forgery types,
leading to more accurate and context-aware localization.

4 Conclusion
In this work, we introduced Loupe, a unified and efficient
framework for both deepfake detection and forged region lo-
calization. By integrating a patch-aware classifier with a con-
ditional pixel decoder, Loupe enables robust global and local
prediction with minimal architectural complexity. Further-
more, we propose a pseudo-label-guided test-time adapta-
tion mechanism to improve generalization under distribution
shifts. Extensive experiments on the DDL dataset demon-
strate that Loupe achieves state-of-the-art performance, out-
performing all competitors in the IJCAI 2025 Deepfake De-
tection and Localization Challenge.
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Appendix
A Hyper-parameters
In this section, we list all hyper-parameters used during train-
ing and test-time adaption in Table 4, Table 5 and Ap-
pendix A. It is worth noting that the weighting factor α in
Lpatch (see Eq (1)) and Lmask (see Eq (4)) is determined em-
pirically on a randomly selected subset of the dataset. For
instance, in the training set of the DDL dataset, forged pix-
els account for approximately 20% of all pixels. Therefore,
to address the class imbalance problem, we set α = 0.8 in
Lmask, as shown in Table 5.

Table 4: The hyper parameters for stage 1: classification.

Param Value
learning rate (lr) 5e-4

lr scheduler warmup-stable-decay
warmup steps 10% total steps
decay steps 10% total steps

epoch 1
batch size 48

accumulative grad batches 8
optimizer AdamW

weight decay 1e-3
grad clip 1.0
Lpatch α = 0.85, γ = 2.0, ϵ = 1.0

Table 5: The hyper parameters for stage 2: segmentation. For pa-
rameters not mentioned, keep the same as stage 1 or Mask2Former.

Param Value
learning rate (lr) 5e-4

batch size 40
accumulative grad batches 3

weight decay 5e-2
num queries 20

Lmask α = 0.8, γ = 2.0, ϵ = 1.0
λ1 5
λ2 5
λ3 2

Table 6: The hyper parameters for test-time adaption. For parame-
ters not mentioned, keep the same as stage 2 or Mask2Former.

Param Value
learning rate (lr) 1e-4

batch size 96
accumulative grad batches 1
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