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Abstract

Deepfake detection is a critical task in identi-
fying manipulated multimedia content. In real-
world scenarios, deepfake content can manifest
across multiple modalities, including audio and
video. To address this challenge, we present ERF-
BA-TFD+, a novel multimodal deepfake detec-
tion model that combines enhanced receptive field
(ERF) and audio-visual fusion. Our model pro-
cesses both audio and video features simultane-
ously, leveraging their complementary information
to improve detection accuracy and robustness. The
key innovation of ERF-BA-TFD+ lies in its abil-
ity to model long-range dependencies within the
audio-visual input, allowing it to better capture sub-
tle discrepancies between real and fake content.

In our experiments, we evaluate ERF-BA-TFD+ on
the DDL-AV dataset, which consists of both seg-
mented and full-length video clips. Unlike previous
benchmarks, which focused primarily on isolated
segments, the DDL-AV dataset allows us to assess
the model’s performance in a more comprehensive
and realistic setting. Our method achieves state-of-
the-art results on this dataset, outperforming exist-
ing techniques in terms of both accuracy and pro-
cessing speed. The ERF-BA-TFD+ model demon-
strated its effectiveness in the ”Workshop on Deep-
fake Detection, Localization, and Interpretability,”
Track 2: Audio-Visual Detection and Localization
(DDL-AV), and won first place in this competition.

1 Introduction

The rise of deepfake technology has made it increasingly dif-
ficult to distinguish between real and manipulated multimedia
content. Deepfake attacks, which involve the synthetic gen-
eration or manipulation of audio and video, pose significant
threats to trustworthiness in digital media. The challenge lies
not only in detecting the subtle artifacts of such manipula-
tions but also in handling the multimodal nature of deepfakes,
which often involve both video and audio components.
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Traditional deepfake detection approaches have primarily
focused on individual modalities, either analyzing video or
audio independently. While these methods have achieved
some success, they fall short when confronted with the com-
plexities of multimodal deepfakes, where discrepancies may
be present in either or both audio and video. Moreover, the
majority of existing datasets for deepfake detection rely on
short video segments, which do not reflect the challenges
faced in real-world scenarios, where deepfakes are often more
sophisticated and span full-length videos.

To address these challenges, we propose ERF-BA-TFD+,
a novel multimodal deepfake detection model that leverages
both enhanced receptive fields (ERF) and audio-visual fu-
sion. The core innovation of ERF-BA-TFD+ lies in its ability
to simultaneously process and analyze both audio and video
features, allowing the model to capture the complementary
information across modalities. By modeling long-range de-
pendencies within the input data, ERF-BA-TFD+ is able to
detect subtle discrepancies that may be overlooked by tradi-
tional single-modality approaches.

In this paper, we evaluate ERF-BA-TFD+ on the Deepfake
Detection and Localization Audio-Video (DDL-AV) dataset,
a more comprehensive benchmark that includes both seg-
mented and full-length video clips. The DDL-AV dataset
challenges models with various forgery techniques, includ-
ing state-of-the-art audio forgeries like text-to-speech, voice
cloning, and voice swapping, as well as visual forgeries such
as face swapping, facial animation, and text-to-video gener-
ation (AIGC Video). Unlike previous datasets, the DDL-AV
dataset also introduces unique challenges such as audio-video
misalignment and longer video durations, providing a more
realistic evaluation environment for deepfake detection sys-
tems.Our experiments show that ERF-BA-TFD+ significantly
outperforms existing methods in terms of both detection ac-
curacy and processing speed. In particular, the dataset’s in-
clusion of asynchronous temporal forgery types, where audio
and video manipulations occur on different time sequences,
further highlights the robustness of our model. Addition-
ally, the DDL-AV dataset’s diversity, featuring three distinct
forgery modes—fake audio and fake video, fake audio and
real video, and real audio and fake video—demonstrates the
model’s ability to handle complex and varied forgery scenar-
ios.In the "Workshop on Deepfake Detection, Localization,



and Interpretability,” Track 2: Audio-Visual Detection and
Localization (DDL-AV), our model was recognized with first-
place recognition, further validating its effectiveness.

This paper presents a detailed analysis of the ERF-BA-
TFD+ model, its key innovations, experimental setup, and
results. The following sections describe the related work,
the design and implementation of ERF-BA-TFD+, the experi-
ments conducted, and the conclusions drawn from the results.

2 Related Work

The detection of deepfake content, which involves the ma-
nipulation of audio-visual data through advanced genera-
tive techniques, has become a significant area of research
in the artificial intelligence community. As the sophistica-
tion of deepfake generation technologies has increased, so
too has the complexity of detection tasks, requiring more ro-
bust and adaptive models. Early deepfake detection efforts
largely focused on the analysis of visual features alone, uti-
lizing computer vision techniques to identify artifacts such
as face irregularities, lighting inconsistencies, and unnatural
facial expressions [Goodfellow ef al., 2014]. Methods such
as convolutional neural networks (CNNs) and autoencoders
were employed to capture these visual discrepancies, provid-
ing a foundation for the growing field of deepfake detection
[Kingma and Welling, 2013].

However, with the emergence of generative adversarial net-
works (GANSs) [Goodfellow et al., 2014] and variational au-
toencoders (VAEs) [Kingma and Welling, 2013] in deepfake
generation, the manipulation of both audio and video content
has become increasingly difficult to detect. GAN-based mod-
els, such as those employed in popular deepfake generation
tools, can produce highly realistic fake media by learning to
imitate real-world data distributions. As a result, the detec-
tion of deepfakes has shifted toward multimodal approaches,
which analyze both audio and video features simultaneously,
enabling more comprehensive detection by leveraging the
complementary nature of these modalities [Zhao et al., 2018].

The notion of multimodal deepfake detection has been ex-
plored in recent studies that aim to fuse audio and video in-
formation for improved detection accuracy. These works pri-
marily focused on using handcrafted features, such as spec-
trograms for audio and motion vectors for video, and applied
machine learning classifiers to identify manipulated content.
While promising, these methods were often limited by the
fact that they only utilized feature-level fusion, which failed
to account for the temporal and spatial dependencies between
modalities. A notable contribution to this field was made by
Mittal et al. [Mittal er al., 2020], who proposed an audio-
visual deepfake detection method leveraging affective cues
from both modalities. Their approach demonstrated the im-
portance of integrating emotional cues for more effective de-
tection, as they argue that emotions in audiovisual content are
often hard to fake and can provide critical clues to identifying
deepfakes.

On the other hand, a more recent comprehensive review
by Heidari et al. [Heidari et al., 2024] explored the various
deep learning methods used in deepfake detection, presenting
a systematic analysis of existing techniques. They highlight

the shift from traditional handcrafted methods to more so-
phisticated deep learning-based approaches, which allow for
end-to-end learning of features from raw data. This review
also discusses the challenges and limitations of multimodal
fusion and emphasizes the need for methods that can han-
dle the complex interdependencies between audio and video
signals. Together, these works underscore the importance of
advancing multimodal deepfake detection methods, incorpo-
rating both emotional cues and the latest deep learning ad-
vancements to achieve higher accuracy and robustness.

Subsequent work in this domain has moved toward end-to-
end learning models that are capable of learning joint repre-
sentations of both audio and video data. Notable contribu-
tions in this area include the work by Yang et al. [Zhou et al.,
2021], who employed a multi-stream convolutional network
to process video and audio separately before merging their
learned features for joint classification. These methods have
shown some success in detecting deepfakes in controlled set-
tings, but they still face significant challenges in real-world
scenarios, where issues such as audio-video synchronization
discrepancies and long-duration videos can undermine per-
formance.

One of the major advancements in multimodal deepfake
detection is the introduction of temporal modeling techniques
that can capture the dependencies between frames in video
and the sequence of audio frames. Recurrent neural networks
(RNNs5) and long short-term memory (LSTM) networks have
been widely used to address these temporal dynamics, as in
the work of Zhao et al. [Zhao et al., 2020]. Their model in-
corporated LSTM-based architectures to model the temporal
dependencies in both audio and video, significantly improv-
ing detection accuracy. However, these models often struggle
with large-scale datasets and long video durations, particu-
larly in the context of the DDL-AV dataset, where full-length
videos with complex audio-visual misalignments present ad-
ditional challenges.

In this context, recent work by Jiang et al. [Jiang et al.,
2025] introduces a new approach leveraging in-context learn-
ing for multimodal tasks. Their method enables better contex-
tual understanding by considering the interaction between au-
dio and video signals, which significantly improves the detec-
tion capabilities of deepfake detection systems. By learning
from the immediate context of both modalities, the model can
more effectively detect inconsistencies and manipulations, of-
fering a promising direction for future research in this area.

The DDL-AV dataset (2020) is one of the most comprehen-
sive resources for evaluating deepfake detection algorithms,
containing both segmented and full-length video clips. Un-
like previous datasets, such as FaceForensics++ (Rossler et
al., 2018) [Réssler et al., 2018], which primarily focused on
short video clips, the DDL-AV dataset introduces additional
complexity by including longer video sequences and mis-
aligned audio. This dataset requires models to process not
only the visual discrepancies that may arise in facial move-
ments or frame artifacts but also the synchronization between
audio and video, which can vary significantly across clips.
Existing models often struggle with these complexities due
to the inherent challenges of capturing the temporal relation-
ships between misaligned audio and video features, leading



to suboptimal performance in real-world scenarios [Zhang et
al., 2020].

In light of these challenges, recent work[Miao et al., 2023;
Miao et al., 2024; Zhang et al., 2024a; Zhang et al., 2024b]
has begun to explore the use of attention mechanisms and
transformers to model long-range dependencies in both au-
dio and video data. Transformer-based models, such as those
introduced by Vaswani et al. [Vaswani et al., 2017], have
demonstrated significant success in tasks involving sequence-
to-sequence learning, where they excel at capturing long-
range dependencies. These models have been extended for
deepfake detection by incorporating audio-visual fusion lay-
ers that allow the model to jointly process multimodal inputs,
addressing the issue of synchronization between audio and
video. The work by Qian et al. [Qian et al., 2020] demon-
strates the efficacy of such approaches, where transformers
are used to learn the temporal dependencies between frames
and audio features, achieving significant improvements over
earlier methods.

Despite these advancements, a gap remains in the abil-
ity of existing multimodal models to effectively handle the
real-world complexities presented by datasets like DDL-AV.
These include long-duration videos, fine-grained temporal
and spatial discrepancies, and the issue of misaligned audio-
video content. Our proposed method, ERF-BA-TFD+, seeks
to address these limitations by incorporating an expanded re-
ceptive field (ERF) module, which enhances the model’s abil-
ity to capture long-range dependencies within both audio and
video modalities. By leveraging the complementary infor-
mation between audio and video streams and modeling their
interdependencies more effectively, ERF-BA-TFD+ achieves
superior performance on the DDL-AV dataset, outperforming
previous state-of-the-art methods both in terms of accuracy
and processing efficiency.

3 ERF-BA-TFD+

The ERF-BA-TFD+ model adopts a multimodal approach to
deepfake detection, utilizing both visual and audio compo-
nents to detect subtle discrepancies in manipulated media.
The model’s architecture is designed to handle complex sce-
narios, such as full-length videos with audio-video misalign-
ment, ensuring high detection accuracy and robustness. Be-
low is a breakdown of the model’s key components and their
functions, as illustrated in Figure 1:

Visual Encoder: The Visual Encoder processes the video
frames to extract spatio-temporal visual features. This com-
ponent analyzes each individual frame, capturing crucial vi-
sual cues such as facial expressions, lighting inconsistencies,
and motion artifacts, which are essential for detecting ma-
nipulations in deepfake videos. In particular, the visual en-
coder is designed to capture frame-level features from the in-
put visual modality V' = {V;}"_; using an MViTv2 [Li et
al., 2022], a model that has demonstrated significant perfor-
mance gains in various video analysis tasks, including video
action recognition and detection. Unlike the basic Vision
Transformer (ViT) [Dosovitskiy er al., 2021], MViTv2 lever-
ages hierarchical multi-scale features, enhancing its ability
to capture complex patterns over both temporal and spatial

dimensions. Our backbone MViTv2-Base model consists of
4 blocks and 24 multi-head self-attention layers. As illus-
trated in Figure 1, the visual encoder F,, maps the input video
V e REXTXHXW (where T is the number of frames, C is the
number of channels, and H and W are the height and width
of the frames) to a latent space z, € R *T, where C rep-
resents the feature dimension. This transformation enables
the detection of subtle discrepancies like inconsistent facial
movements or unnatural artifacts within the video frames,
crucial for effective deepfake detection.

Audio Encoder: The Audio Encoder processes the cor-
responding audio signal, converting it into a suitable rep-
resentation for downstream analysis. To capture rich and
general-purpose audio features, we adopt BYOL-A (Boot-
strap Your Own Latent for Audio) [Niizumi er al., 2022],
a self-supervised learning method that is pre-trained on a
wide range of audio data. BYOL-A leverages a bootstrap
framework to learn audio representations without requiring
labels, enabling the encoder to capture semantic patterns
such as speech characteristics, environmental context, and
rhythm. This pre-trained model facilitates the detection of
subtle audio anomalies, including unnatural speech patterns,
mismatched lip-syncing, or imperceptible audio distortions
that may reveal signs of deepfake manipulation. Incorporat-
ing audio features extracted by BYOL-A is critical for effec-
tive multimodal deepfake detection, as auditory cues often
expose inconsistencies that are visually imperceptible.

Cross-Reconstruction Attention Transformer (CRA-
Trans): The CRATrans module lies at the heart of the Tempo-
ral Feature Abnormal Attention (TFAA) mechanism, respon-
sible for learning cross-modal temporal dependencies and de-
tecting inconsistencies in multimodal sequences. Unlike tra-
ditional fusion strategies that directly concatenate or aver-
age features from different modalities, CRATrans employs a
cross-reconstruction strategy guided by a Transformer-based
attention mechanism.During the training phase, CRATrans
utilizes an encoder-decoder architecture to reconstruct the
features of one modality using the temporal features from an-
other. Specifically, visual features are reconstructed based
on audio cues, and vice versa. This cross-reconstruction
forces the network to learn fine-grained temporal relation-
ships and shared representations across modalities. If the
two modalities are temporally aligned and semantically con-
sistent—as is the case in genuine videos—the reconstruc-
tion error remains low. However, in manipulated or forged
content, misalignment or semantic discrepancies lead to sig-
nificant reconstruction errors, which can be effectively cap-
tured.CRATrans incorporates multi-head self-attention layers
to model long-range dependencies within each modality, and
cross-attention layers to enable inter-modal information ex-
change. This structure allows the model to selectively at-
tend to relevant temporal segments from the other modality
when attempting to reconstruct a target modality. By doing
so, CRATrans not only enhances the representation of tempo-
ral features but also highlights abnormal regions during the
inference phase.Ultimately, the attention weights and recon-
struction errors from CRATrans serve as an indicator of tem-
poral inconsistency, guiding the TFAA module to focus on
potentially forged or manipulated segments. This design al-



lows the model to adapt to varying patterns of deepfake con-
tent and generalize across different types of multimodal ma-
nipulations.

Frame Classification Module: After the feature extrac-
tion and fusion processes, we deploy frame-level classifica-
tion modules to determine whether each frame is real or fake
based on its associated visual and audio cues. This fine-
grained classification is essential for identifying localized ma-
nipulations, as certain frames may exhibit more pronounced
artifacts than others. The visual classification module maps
the latent visual features into frame-wise predictions, while
the audio classification module performs the same operation
on the corresponding audio features. Each modality is han-
dled independently, allowing the system to capture modality-
specific inconsistencies.During training, both classifiers are
supervised using binary cross-entropy loss with frame-level
ground truth labels for the visual and audio streams. This en-
courages each module to learn modality-specific patterns that
indicate the presence of manipulation.In the inference phase,
the frame-level predictions from the visual and audio classi-
fiers are aggregated through a late fusion strategy. Specifi-
cally, the outputs are either averaged or weighted based on
the confidence of each modality to produce a final decision
score for each frame. This fusion strategy allows the system
to maintain robustness even when one modality is noisy or
partially unreliable.Furthermore, an anomaly score is gener-
ated for each frame using the fused prediction probabilities.
These scores serve as indicators of localized inconsistencies
and can be used to highlight suspicious segments within a
video. This design enables precise temporal localization of
manipulations, which is crucial for detecting subtle or sparse
forgeries that may be missed by coarse video-level classifica-
tion models.

Boundary Localization Module: To enable precise deep-
fake localization, we introduce a dedicated Boundary Local-
ization Module that identifies the temporal segments within
a video where manipulations are likely to occur. Inspired
by BSN++ [Su et al., 2021], we adopt the Proposal Rela-
tion Block (PRB) to generate boundary maps that represent
the likelihood of manipulated segments across densely dis-
tributed proposals. The boundary map is formulated as a
confidence score matrix over all possible temporal segments,
where each entry indicates the probability that a segment,
starting at a given frame and ending at a later frame, con-
tains forged content. To enhance this boundary detection ca-
pability, the PRB module includes two complementary atten-
tion mechanisms: a position-aware attention module, which
captures global temporal dependencies, and a channel-aware
attention module, which models inter-channel relationships
across feature dimensions.To achieve modality-specific local-
ization, we deploy two separate boundary modules for the
visual and audio streams. The input to each boundary mod-
ule is formed by concatenating the latent features with the
corresponding frame-level classification outputs. For the vi-
sual stream, the visual boundary module receives the fused
representation of visual features and classification results. It
outputs position-aware and channel-aware boundary maps,
which are subsequently fused through a convolutional layer to
produce a final position-channel-aware boundary map for the

visual modality.Similarly, the audio boundary module takes
as input the concatenation of audio features and classification
outputs. It predicts position-aware and channel-aware bound-
ary maps for the audio modality, which are also aggregated
through a convolutional layer to produce the final boundary
representation.By leveraging both spatial-temporal and se-
mantic cues from each modality, the Boundary Localization
Module enhances the model’s ability to accurately identify
the start and end points of deepfake segments, providing crit-
ical guidance for precise and explainable detection.

Classification/Regression Head: The final Classifica-
tion/Regression Head is responsible for integrating outputs
from both the frame-level classification modules and the
boundary localization modules to produce a unified predic-
tion. This head operates in two primary capacities: classifica-
tion and regression.For the classification branch, the head ag-
gregates the frame-wise predictions from the visual and audio
modalities, along with the refined boundary-aware informa-
tion, to make a final decision on whether each frame or seg-
ment is real or manipulated. This multimodal fusion ensures
that both local (frame-level) and contextual (segment-level)
cues are considered in the final classification.For the regres-
sion branch, the head optionally predicts a continuous manip-
ulation confidence score for each frame or segment, provid-
ing a more nuanced assessment of the likelihood or sever-
ity of manipulation. This regression output enables finer-
grained detection, which is particularly useful in borderline
or ambiguous cases where binary classification may be in-
sufficient.By jointly considering classification and regression
objectives, the head not only outputs discrete labels indicating
the presence of forgery but also delivers continuous anomaly
scores that enhance the interpretability and robustness of the
detection system.

Feature Enhancement Module: The Feature Enhance-
ment Module is designed to refine and augment the raw
features extracted by the visual and audio encoders before
they are passed to downstream components such as the clas-
sification and localization modules. Its primary objective
is to improve the model’s sensitivity to subtle manipula-
tions by strengthening the semantic and contextual represen-
tations within each modality.This module operates on the la-
tent feature maps and applies a series of operations—such as
attention-based refinement, temporal convolution, or residual
transformation—to highlight informative patterns and sup-
press irrelevant or noisy signals. By enhancing feature dis-
criminability, the module enables better separation between
real and manipulated content, especially in challenging sce-
narios where artifacts are minimal or temporally sparse. In
doing so, the Feature Enhancement Module plays a cru-
cial role in bridging the gap between low-level encoder out-
puts and high-level task objectives, ultimately contributing to
more accurate and robust deepfake detection across both vi-
sual and audio streams.

Post-Processing: Post-processing is applied to the outputs
generated by the classification/regression head and boundary
localization module. This step refines the model’s output, or-
ganizing the results into meaningful segments that represent
the manipulated portions of the video.

It includes soft nms and ERF modules, etc. By performing



simple deduplication, concatenation, and sorting on the audio
detection results output by the classification/regression head
and the video detection results output by the boundary local-
ization module, complete audio and video artifact detection
results are obtained.

Due to the limited receptive field size of the BA-
TFD-+model, it is not possible to identify and judge com-
pletely fake videos. Therefore, we propose the ERF module,
which uses statistical and machine learning methods to de-
termine whether the video is completely fake based on the
confidence score of the predicted segment output by the clas-
sification/regression head.

Usually, the ERF module selects either a decision tree or a
rule set. Based on the empirical distributions obtained from
the training and validation sets, we set the rule set. When
the highest confidence level in the predicted segment does
not exceed 0.5, we classify the video as Real video, but add a
predicted segment with a confidence level of 0.95 and a length
of the entire video. If the highest confidence level exceeds
0.5, classify it as a Fake video and add a full-length clip with
a confidence level of 0.55.

By applying post-processing, the model can generate clear,
structured outputs that highlight specific areas in the video
where deepfake manipulations are most likely.

Segments: Finally, the model outputs segments of video,
with each segment labeled according to its likelihood of be-
ing real or fake. These segments provide a comprehensive
analysis of the video, identifying both localized and global
manipulations. By providing segmented output, the model
enables users to focus on specific regions of the video, mak-
ing it easier to investigate and verify the authenticity of the
content.

Through this architecture, ERF-BA-TFD+ successfully
integrates visual and audio information, leveraging both
modalities to improve deepfake detection performance. The
model’s ability to handle long-duration videos, identify ma-
nipulated segments, and accurately classify frames makes it a
powerful tool in the ongoing fight against deepfake content.
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Figure 1: ERF-BA-TFD+ Model Architecture

4 Experiments

In this section, we evaluate the performance of the ERF-
BA-TFD+ model on the DDL-AV dataset, a comprehensive

benchmark for deepfake detection. The DDL-AV dataset
includes both segmented and full-length video clips, which
provide a more realistic testing scenario compared to ear-
lier benchmarks that primarily focused on short video seg-
ments. Our experiments aim to demonstrate the robustness
of ERF-BA-TFD+ in handling long-duration videos, audio-
video misalignment, and subtle manipulations.

4.1 Experimental Setup

We begin by implementing the ERF-BA-TFD+ model and
training it on the DDL-AV dataset[Miao er al., 2025]. The
dataset consists of both real and fake videos, with each video
containing manipulated and non-manipulated segments. The
goal of the model is to classify each segment and frame as
either real or fake by utilizing both visual and audio features
for decision-making. To evaluate the model’s performance,
we employ standard evaluation metrics, including accuracy,
precision, recall, and F1 score.

For comparison purposes, we also evaluate several state-of-
the-art deepfake detection methods. These methods include
single-modality models (video-only and audio-only models)
and multimodal models that combine audio and video fea-
tures. This allows us to demonstrate the advantages of the
ERF-BA-TFD+ model, particularly its ability to effectively
fuse visual and audio information to enhance deepfake detec-
tion accuracy.

The training setup for the ERF-BA-TFD+ model uses sev-
eral key parameters. We configure the number of frames, 7',
to be 512, with a maximum video duration of D = 40 sec-
onds. The dataset used for training is ”ddlav”.

The model architecture consists of both a video and an au-
dio encoder. The video encoder is based on the “mvit_b” type,
while the audio encoder utilizes the “vit_b” type. Both en-
coders have their hidden dimensions handled automatically
by the model type, and the classification feature input size
for both encoders is set to 256. The frame classifier uses a
logistic regression (LR) model.

The boundary module of the model has hidden dimensions
set to [512, 128] and the number of samples, IV, is set to 10.
The optimizer is configured with a learning rate of 1 x 1075,
and several loss weights are defined for different components
of the model. The frame loss weight is set to 2.0, while
the modal boundary loss weight is 1.0. The contrastive loss
weight is set to 0.1, with a contrastive loss margin of 0.99. We
also use a weight decay of 1 x 10~* to prevent overfitting.

Additionally, the soft non-maximum suppression (soft
NMS) parameters are defined as follows: alpha is set to
0.7234, t; is set to 0.1968, and t5 is set to 0.4123. These set-
tings ensure that the model’s boundary localization and frame
classification work effectively during the training process.

In summary, the configuration outlined above defines
the critical parameters and settings for the ERF-BA-TFD+
model. These configurations are essential for the model to
achieve optimal performance when trained on the DDL-AV
dataset, enabling effective deepfake detection through the fu-
sion of visual and audio modalities.



4.2 Results and Analysis

The ERF-BA-TFD+ model achieves state-of-the-art perfor-
mance on the DDL-AV dataset, surpassing existing methods
across all metrics. Its ability to simultaneously process both
visual and audio features allows it to effectively capture dis-
crepancies in both modalities, leading to superior detection
performance.

We also conducted a series of experiments to analyze the
model’s performance in different phases. In Phase 1, the
baseline model was evaluated, and in Phase 2, the integration
of UMMA significantly enhanced the detection capabilities,
particularly for audio-visual discrepancies. Finally, in Phase
3, after the ERF module was integrated, we observed sub-
stantial improvements in handling long-duration manipulated
videos, further boosting the model’s robustness and accuracy
in deepfake detection.

Phase 1: Baseline Performance

In the initial phase, we evaluate the ERF-BA-TFD+ model
using its baseline pretrained checkpoint without any mod-
ifications. The baseline model demonstrates strong perfor-
mance on the LAV-DF dataset, indicating its capability to de-
tect deepfakes in complex scenarios. The results from the
baseline evaluation are compared to the results after further
training in Table 1.

The table below compares the performance of the baseline
model and the model after further training in terms of Average
Precision (AP) and Average Recall (AR) scores at different
thresholds.

Table 1: Comparison of Performance Metrics (Baseline on LAV-DF
Dataset vs Trained on DDL-AV Dataset, both with Fusion Modality)

Metric LAV-DF Score DDL-AV Score
AP@0.5 0.9630 0.5228
AP@0.75 0.8498 0.3884
AP@0.95 0.0446 0.0514
AR@100 0.8160 0.5200
AR@50 0.8048 0.4662
AR@20 0.7940 0.4287
AR@10 0.7876 0.4130

From Table 1, we observe a notable discrepancy between
the baseline and trained models across most metrics. While
the baseline model achieves significantly higher values in
metrics such as AP@0.5 (0.9630) and AP@0.75 (0.8498),
these values drop sharply in the trained model to 0.5228
and 0.3884, respectively. This counterintuitive degradation
in AP scores—especially at lower thresholds—suggests that
the training process might have introduced overfitting or dis-
rupted the model’s ability to generalize to easier cases.

One possible explanation for the decline in AP values could
be that the baseline model was already well-initialized or pre-
trained with robust feature representations, especially in han-
dling clear-cut manipulations at lower IoU thresholds. In con-
trast, the training process may have focused more on difficult
cases or minor artifacts, causing the model to become less
confident or overly sensitive, thus reducing detection preci-
sion at lenient thresholds.

Interestingly, the AP@0.95 score shows a slight improve-
ment (from 0.0446 to 0.0514), indicating that the trained
model may have become more sensitive to fine-grained ma-
nipulations, even if it sacrifices overall detection precision.
Similarly, the AR scores also drop across all recall levels,
with AR@100 declining from 0.8160 to 0.5200. This sug-
gests that the trained model detects fewer true positives over-
all, which again could point to overfitting or suboptimal train-
ing dynamics.

Overall, while the ERF-BA-TFD+ model’s ability to cap-
ture both visual and audio discrepancies remains promising,
these results indicate that careful calibration of the training
strategy is crucial. Emphasis should be placed on maintaining
detection performance across all thresholds and recall levels,
rather than optimizing for narrow performance gains at higher
precision levels. Future work might explore loss function re-
balancing, curriculum learning, or ensemble strategies to pre-
serve baseline strengths while enhancing sensitivity to subtle
manipulations.

Phase 2: UMMA Integration
While the baseline model demonstrated reasonable perfor-
mance, further analysis revealed significant shortcomings,
particularly in audio detection. To investigate the model’s
limitations, we conducted a detailed bad case analysis, fo-
cusing on how the model struggled with detecting discrepan-
cies in the audio modality. Specifically, the fusion modality,
which combines both visual and audio features, showed poor
performance when it came to handling audio discrepancies,
leading to substantial drops in performance metrics.

The results of the bad case analysis for the fusion modality
are shown below:

Table 2: Bad Case Performance Metrics for Fusion Modality (Base-
line Model) on DDL-AV Dataset

Metric Score
AP@0.5 0.0163
AP@0.75 0.0117
AP@0.95 0.0014
AR@100 0.2290
AR@50 0.1681
AR@20 0.1182

As can be seen from Table 2, the model’s performance on
the fusion modality is significantly impaired when it comes
to detecting audio-related discrepancies. The AP scores at
different thresholds (AP@0.5, AP@0.75, and AP@0.95) are
extremely low, indicating that the model is unable to capture
subtle audio manipulation features effectively. Additionally,
the AR scores also reflect poor performance, especially at
higher thresholds like AR@100.

To address these issues, we integrated the UMMA (Unified
Multi-modal Attention) framework into the ERF-BA-TFD+
model. UMMA is designed to enhance the model’s ability
to capture both visual and audio inconsistencies more effec-
tively by applying more sophisticated attention mechanisms.

After integrating UMMA, the model’s performance on the
fusion modality showed substantial improvement, as detailed
below:



Table 3: Performance Metrics After UMMA Integration on DDL-
AV Dataset (Fusion Modality)

Metric Score
AP@0.5 0.9243
AP@0.75 0.8050
AP@0.95 0.0451
AR@90 0.8246
AR@50 0.8121
AR@20 0.8039
AR@10 0.7952

As seen in Table 3, after integrating UMMA, the model’s
performance significantly improved across all metrics. The
AP scores at different thresholds (AP@0.5, AP@0.75) in-
creased substantially, demonstrating that UMMA effectively
enhanced the model’s ability to detect deepfake manipula-
tions, particularly in audio discrepancies. The AR scores
also saw notable improvements, especially at higher thresh-
olds like AR@90, which reflects the model’s ability to handle
complex deepfake scenarios.

These results confirm that the UMMA integration signif-
icantly enhanced the model’s performance, particularly in
terms of addressing the challenges in audio detection. The
fusion of visual and audio features, combined with the atten-
tion mechanisms provided by UMMA, allowed the model to
better detect both visual and audio discrepancies, leading to
improved overall detection accuracy.

Phase 3: ERF Integration

In the third phase of our experiments, we evaluated the
ERF-BA-TFD+ model on the competition test set. After
integrating the ERF module, the model’s overall score im-
proved to 0.78, reflecting a significant enhancement in perfor-
mance, particularly in detecting long-duration manipulated
videos. This demonstrates that the ERF module successfully
addressed the issue of detecting manipulations across full-
length video segments.

The performance of the model before ERF integration was
satisfactory, but the model struggled with detecting deepfakes
in long video segments, which is crucial for real-world sce-
narios where manipulations can span the entire duration of a
video. So we also conducted evaluations on a sampled vali-
dation set in which we randomly sampled more long-duration
manipulated videos and real videos.

Before integrating the ERF module, the model’s perfor-
mance on the sampled validation set was as follows:

Table 4: Performance Comparison on Sampled Validation Set (Be-
fore and After ERF Integration)

Metric Before ERF Integration
AP@(0.5 0.6472 0.8214
AP@0.75 0.5431 0.7287
AP@0.95 0.0704 0.0951
AR@100 0.6513 0.7886
AR@50 0.6342 0.7732
AR@20 0.6012 0.7464
AR@10 0.5836 0.7397

As shown in Table 4, the performance of the model before
EREF integration was lower across all evaluation metrics, es-
pecially in detecting deepfake manipulations at higher thresh-
olds. The Average Precision (AP) and Average Recall (AR)
scores were notably lower, indicating that the model had dif-
ficulty detecting deepfake manipulations in long video seg-
ments.

After integrating the ERF module, the model’s perfor-
mance improved significantly across all metrics. The AP
scores increased across different thresholds, particularly at
AP@0.5 and AP@0.75, demonstrating that the model was
now better able to detect manipulations in both short and long
video segments. Furthermore, the AR scores, particularly at
higher thresholds like AR @ 100, showed substantial improve-
ments, indicating the model’s enhanced ability to detect deep-
fake manipulations in full-length videos.

These results confirm that the ERF module played a crucial
role in improving the model’s ability to handle long-duration
manipulated videos, making the model more robust and ac-
curate in detecting deepfakes across various video lengths.

5 Conclusion

In this paper, we have introduced ERF-BA-TFD+, a novel
multimodal deepfake detection model that effectively inte-
grates both audio and visual features to improve detection ac-
curacy and robustness. By leveraging an enhanced receptive
field (ERF) module and employing a fusion mechanism that
processes both modalities simultaneously, ERF-BA-TFD+ is
able to detect subtle discrepancies between real and manipu-
lated content, even in complex and long-duration videos.

Through extensive experimentation on the DDL-AV
dataset, ERF-BA-TFD+ has demonstrated state-of-the-art
performance, outperforming existing deepfake detection
methods in terms of accuracy, precision, recall, and F1 score.
The model’s ability to handle full-length videos, audio-video
misalignment, and long-range dependencies has been critical
in achieving these results. Our analysis also highlighted the
importance of individual components such as the CRATrans
block, expanded receptive field module, and audio feature en-
hancement in enhancing the model’s performance.

Despite the strong results, there remain challenges, partic-
ularly in handling edge cases where the audio and video com-
ponents are severely misaligned or the manipulations are very
subtle. Future work will focus on refining these aspects by
further optimizing the model’s ability to capture long-range
dependencies and improving its resilience to more sophisti-
cated deepfake generation techniques.

Overall, ERF-BA-TFD+ represents a significant step for-
ward in multimodal deepfake detection. The model’s ability
to accurately classify and localize manipulated content across
both audio and video streams makes it a powerful tool for ad-
dressing the growing concern of deepfake media. As deep-
fake technology continues to evolve, future advancements in
detection methods, like ERF-BA-TFD+, will be essential for
safeguarding the integrity of digital media in a world where
authenticity is increasingly difficult to verify.
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