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Abstract
The rapid advancement of generative adversarial
networks (GANs) and diffusion models has en-
abled the creation of highly realistic deepfake con-
tent, posing significant threats to digital trust across
audio-visual domains. While unimodal detection
methods have shown progress in identifying syn-
thetic media, their inability to leverage cross-modal
correlations and precisely localize forged segments
limits their practicality against sophisticated, fine-
grained manipulations. To address this, we intro-
duce a multi-modal deepfake detection and local-
ization framework based on a Feature Pyramid-
Transformer (FPN-Transformer), addressing criti-
cal gaps in cross-modal generalization and tem-
poral boundary regression. The proposed ap-
proach utilizes pre-trained self-supervised models
(WavLM for audio, CLIP for video) to extract hi-
erarchical temporal features. A multi-scale fea-
ture pyramid is constructed through R-TLM blocks
with localized attention mechanisms, enabling joint
analysis of cross-context temporal dependencies.
The dual-branch prediction head simultaneously
predicts forgery probabilities and refines temporal
offsets of manipulated segments, achieving frame-
level localization precision. We evaluate our ap-
proach on the test set of the IJCAI’25 DDL-AV
benchmark, showing a good performance with a fi-
nal score of 0.7535 for cross-modal deepfake detec-
tion and localization in challenging environments.
Experimental results confirm the effectiveness of
our approach and provide a novel way for gener-
alized deepfake detection. Our code is available at
https://github.com/Zig-HS/MM-DDL.

1 Introduction
The rapid advancement of generative adversarial networks
(GANs) and diffusion models has revolutionized audio-visual
synthesis technologies, enabling the creation of highly re-
alistic deepfake content that is increasingly indistinguish-
able from authentic media. While these breakthroughs have
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driven innovations in entertainment, education, and human-
computer interaction, they have also introduced severe secu-
rity threats. Malicious actors exploit synthetic speech syn-
thesis (e.g., voice conversion and text-to-speech systems) and
facial manipulation techniques (e.g., face swapping and at-
tribute editing) to generate deceptive content for identity im-
personation, misinformation dissemination, and social engi-
neering attacks. This dual-use nature of generative AI un-
derscores the urgent need for robust deepfake detection and
localization frameworks capable of safeguarding digital trust
in real-world applications.

Despite significant progress in unimodal deepfake detec-
tion (e.g., audio spoofing analysis or video forgery identifica-
tion), existing methods face two critical limitations. First,
most approaches operate in isolated modalities, failing to
leverage cross-modal correlations that could enhance detec-
tion accuracy and generalization. For instance, audio-visual
consistency cues, such as lip-sync alignment or speaker iden-
tity coherence, are often ignored in single-modality pipelines.
Second, while temporal localization of forged segments (e.g.,
identifying manipulated intervals in a video or audio clip) is
crucial for forensic analysis, current solutions struggle with
partial manipulations (e.g., spliced speech segments or lo-
calized facial edits) due to their reliance on simplistic binary
classification or rigid post-processing heuristics. These short-
comings hinder practical deployment, particularly against
evolving deepfake techniques that exploit multimodal and
fine-grained editing strategies.

To address these challenges, we propose a unified multi-
modal deepfake detection and localization framework based
on Feature Pyramid-Transformer (FPN-Transformer). We
leverage pretrained self-supervised models (WavLM [Chen
et al., 2022] for audio, CLIP [Radford et al., 2021] for video)
to extract hierarchical temporal features, followed by masked
differential convolution for local context modeling. Subse-
quently, we construct a multi-scale feature pyramid using R-
TLM [Sun et al., 2021] blocks with 1D downsampling con-
volutions to jointly analyze audio-visual temporal dependen-
cies through local attention mechanisms. Finally, we em-
ploy a dual-branch prediction head to simultaneously predict
forgery probabilities and precisely localize the start/end off-
sets of manipulated segments. To validate the effectiveness
of our framework, we conduct extensive experiments on the
IJCAI’25 DDL-AV benchmark. Experimental results demon-
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strate that our proposed method achieves superior detection
and localization performance in a comprehensive evaluation.
Our main contributions can be summarized as follows:

• We propose a general-purpose temporal data forgery
detection model for multimodal deepfake localization,
addressing the challenge that existing detection frame-
works struggle to handle multimodal forged data.

• We conduct extensive experiments on the IJCAI’25
dataset to validate the effectiveness of our framework
with a final score of 0.7535, providing novel solutions
toward achieving generalized forgery detection.

2 Related Works
2.1 Synthetic Audio Generation
The rapid advancement of deep learning and generative mod-
els has significantly propelled the development of speech
synthesis technologies. Early speech synthesis methods pri-
marily relied on parametric synthesis (e.g., formant synthe-
sis [Styger and Keller, 1994], linear predictive coding (LPC)
[O’Shaughnessy, 1988]) and concatenative synthesis (e.g.,
unit selection synthesis [Hunt and Black, 1996]), yet these
approaches exhibited notable limitations in naturalness and
flexibility.

Currently, the field of speech synthesis is dominated by
generative adversarial networks (GANs) and diffusion mod-
els, which can produce highly natural speech, often indistin-
guishable from human voices. For instance, models such as
VITS [Kim et al., 2021] and YourTTS [Casanova et al., 2022]
integrate variational inference and speaker adaptation tech-
niques, enabling high-quality multi-speaker synthesis with
limited data. Additionally, diffusion-based probabilistic mod-
els (e.g., DiffWave [Kong et al., 2020], WaveGrad [Chen et
al., 2020a]) generate speech through iterative noise addition
and denoising processes, further enhancing synthesis quality.

Recent advancements in large language models (LLMs)
have spurred the development of autoregressive speech syn-
thesis. Models like VALL-E [Wang et al., 2023] leverage
text-driven audio synthesis to achieve more natural speech
prosody. However, the progress in speech synthesis has also
raised security concerns regarding audio deepfakes. Mali-
cious actors may exploit voice conversion (VC) and text-to-
speech (TTS) technologies for identity impersonation, pos-
ing threats to social trust and privacy security. Consequently,
developing highly robust fake speech detection methods has
become an urgent need for both academia and industry.

2.2 Synthetic Video Generation
Synthetic Video Generation is an emerging technological
field that aims to fabricate facial expressions and movements
of target individuals through AI techniques, thereby produc-
ing deceptive content. So far, Synthetic Video Generation can
be categorized into three types: Face Swapping, Facial Reen-
actment, and Attribute Manipulation.

Face-swapping methods aim to replace a target face with
a source face while preserving the original context and iden-
tity consistency. [Ding et al., 2020] introduced a method that
performs reliably across various scenes and maintains iden-
tity fidelity. However, it suffers from imperfect face-region

blending, often producing boundary artifacts and being sen-
sitive to changes in lighting or pose. [Zendran and Rusiecki,
2021] combined VAE and GAN architectures to better re-
cover facial details and improve latent space controllability,
but the training process tends to be unstable, and the method
struggles with facial expression alignment.

Facial reenactment methods generate new images or videos
that transfer expressions or movements from one face to an-
other. LE-GAN by [Hu et al., 2023] uses a Laplacian pyramid
to enhance facial detail and produce more realistic expres-
sions. However, it can suffer distortions under rapid motion
or large pose variations. B-GAN [Liu et al., 2020] exploits
frequency domain modeling to enhance texture realism and
reduce GAN artifacts, yet it’s sensitive to occlusions and may
produce blurry edges.

Attribute manipulation methods modify facial features
such as age, expression, or hairstyle. [Li et al., 2023] pro-
posed SC-GAN, which embeds semantic directions into the
latent space for fine-grained control and natural output. How-
ever, when editing multiple attributes simultaneously, the
model can exhibit semantic conflicts, and undefined regions
in the latent space may lead to unnatural results. GANprintR
by [Neves et al., 2020] focuses on fingerprint removal from
GAN-generated images to enhance their stealthiness. While
effective against detection, it often sacrifices texture quality.
[Manjula et al., 2022] combined StarGAN, C-GAN, and VAE
for flexible multi-attribute control, but the integration is com-
plex and prone to unstable training.

2.3 Synthetic Audio Detection
The field of fake speech detection originated with the use
of various digital signal processing algorithms to analyze
anomalies in audio signals for distinguishing genuine from
fake audio. Early researchers conducted foundational stud-
ies through statistical modeling and acoustic feature analy-
sis [Malik and Farid, 2010]. With the release of increasingly
large-scale datasets such as ASVspoof [Wang et al., 2020],
research in this domain has deepened significantly. Subse-
quently, deep learning-based approaches have gained promi-
nence, achieving remarkable results across multiple dimen-
sions.

Early approaches to forgery detection relied primarily on
digital signal processing techniques without involving neural
network-based methods. [Malik and Farid, 2010] proposed
leveraging spectral decay characteristics to detect forged
speech, achieving reasonable performance while maintain-
ing strong interpretability. With the advent of neural net-
works, machine learning-based techniques were increasingly
adopted by researchers as countermeasures for forged speech
detection. [Alegre et al., 2012] introduced an SVM-based
robust forgery detection strategy, significantly outperform-
ing traditional digital signal processing methods. Subse-
quently, deep learning techniques were widely applied to
forged speech detection.

Recently, the generalization capability of audio deepfake
detection has garnered increasing attention from researchers,
as it determines whether a detection method can perform ef-
fectively in real-world scenarios or merely achieve seemingly
high metrics on limited academic datasets. [Müller et al.,



2022] discusses the impact of different factors on general-
ization and highlights that many existing approaches perform
poorly on real-world data, indicating that some solutions in
the research community have become overly tailored to spe-
cific datasets, thereby losing generalizability and practical
usability. [Chen et al., 2020b] improves the loss function
by employing IMCL, a loss supervision mechanism that en-
hances feature separation, instead of relying solely on sim-
ple binary cross-entropy loss. Some researchers have also
adopted single-domain generalization techniques to ensure
that the feature space exhibits relatively strong generaliza-
tion [Xie et al., 2023]. These methods are typically trained
and fine-tuned exclusively on large-scale real-world data , en-
abling them to achieve robust detection results against various
unseen attacks.

Simple binary classification has become insufficient for
handling certain complex scenarios, such as partially manip-
ulated audio, where only specific segments of a sample are
generated by speech synthesis algorithms. These manipulated
segments often distort the original semantic meaning of the
audio, posing significant risks. [Yi et al., 2022] introduced
the concept of utterance-level fake speech detection, demon-
strating through their challenge dataset that baseline models
employing traditional binary classification methods perform
poorly when detecting samples containing partially substi-
tuted words or phrases generated by speech synthesis algo-
rithms. Consequently, the detection and localization of par-
tially manipulated speech has emerged as a critical research
focus.

2.4 Synthetic Video Detection
Deepfake detection methods focus primarily on three types
of features: temporal features, spatial features, and frequency
features. Most mainstream detection approaches are based
on one of these domains or integrate multiple feature types to
improve robustness.

Temporal-based deepfake detection methods focus primar-
ily on the temporal consistency between video frames and
abnormal behavioral patterns. These approaches model dy-
namic changes across frame sequences to identify forgeries.
Since fake videos often fail to reproduce genuine human
physiological behaviors, such as blinking, head movements,
and gaze direction, [Li et al., 2018] detect anomalies in blink-
ing frequency to determine video authenticity. [Yang et al.,
2019] analyze inconsistencies in head pose by comparing es-
timates from all facial landmarks with those from central re-
gions. [Peng et al., 2024] focus on interframe gaze angle
variation and propose a spatio-temporal feature fusion mod-
ule that combines gaze dynamics, spatial attributes, and tex-
ture features for classification. Frame-to-frame discontinu-
ities also serve as key indicators of manipulation. [Zheng
et al., 2024] reveal that existing detectors suffer from se-
mantic artifacts across diverse scenes and propose a patch-
shuffling strategy to break these artifacts for generalized de-
tection. [Yin et al., 2023] design a multiscale spatiotempo-
ral aggregation module to model interframe inconsistencies,
while [Choi et al., 2024] observe fluctuations in latent vari-
able styles between frames and develop a style attention mod-
ule accordingly.

Spatial-based detection methods often analyzing single im-
age frames to identify forged artifacts such as texture anoma-
lies, blending boundaries, and lighting inconsistencies. For
example, RECCE [Cao et al., 2022] utilizes reconstruction
consistency to detect shadows learned from real images,
while LGrad [Tan et al., 2023] converts images into gradient
representations using a pre-trained transformation network to
amplify subtle artifacts. [Ba et al., 2024] go beyond isolated
regions and integrate information from multiple nonoverlap-
ping areas to detect more global inconsistencies. [Miao et al.,
2024] further introduce a Mixture-of-Noises Module to en-
hance RGB features with noise traces, improving localiza-
tion accuracy in multi-face manipulation detection. Other
studies emphasize differences between facial and non-facial
regions or leverage fine-grained texture cues [Chai et al.,
2020] [Nirkin et al., 2021].

Frequency-based detection methods transform visual in-
formation from the spatial or temporal domain into the fre-
quency domain and analyze periodic signal characteristics to
reveal manipulation traces.F3-Net [Qian et al., 2020] pro-
poses a dual-branch framework: one branch uses frequency-
aware image decomposition (FAD) to learn fine-grained
forgery patterns, while the other extracts local frequency
statistics (LFS) for semantic-level analysis. HFI-Net[Miao
et al., 2022] incorporates global-local interaction modules to
explore multi-level frequency artifacts and further enhance
detection performance. FreqNet [Tan et al., 2024] focuses
on high-frequency components of images, combining them
with a frequency-domain learning module to extract source-
independent features and improve generalizability. Addition-
ally, [Miao et al., 2023] leverage multi-spectral class centers
to suppress semantic information and enhance localization
capabilities through frequency-aware features.

3 Methodology

Existing deepfake detection solutions are incapable of achiev-
ing generalizable cross-modal detection and localization.
Based on our previous unimodal work [Ji et al., 2024], our ap-
proach enables the detection and localization of multimodal
temporal forgeries. Notably, rather than simultaneously pro-
cessing audio-visual modalities, our approach treats cross-
modal data as unified temporal feature sequences. Figure 1
illustrates the proposed dual FPN-Transformer detection ar-
chitecture, which comprises three key components: temporal
feature embedding and projection module, FPN-Transformer
backbone module, and prediction heads. First, during the fea-
ture embedding stage, we employ pre-trained self-supervised
models (WavLM/CLIP) to encode input temporal data (au-
dio/video) into feature embeddings, generating temporal fea-
ture sequences. Subsequently, these embeddings are pro-
cessed through an encoder composed of lightweight Trans-
former blocks to obtain the feature pyramid. And finally, clas-
sification and regression heads jointly analyze temporal fea-
tures to predict forgery boundaries at each time step, specifi-
cally estimating start times and offset distances of forged seg-
ments for precise localization. The following sections will
elaborate on these components in detail.



Figure 1: Framework of proposed dual FPN-Transformer detection method. First, we employ pre-trained self-supervised models
(WavLM/CLIP:ViT) to encode input temporal data into feature embeddings. Then, these embeddings are processed through an encoder
composed of Transformer blocks to obtain the feature pyramid. And finally, prediction heads jointly analyze temporal features to predict
forgery boundaries. We train two models separately for audios and videos, and combine the output results.

3.1 Feature Embedding and Projection
Problem Definition. Traditional audio or video forgery de-
tection and localization methods exclusively focus on sin-
gle modal inputs, inherently limiting their cross-modal gen-
eralizability. To address this limitation, we propose a uni-
fied problem formulation for multimodal temporal data (au-
dio/video). Specifically, given a temporal input sequence
X = {x1, . . . , xT }, our objective is to generate the corre-
sponding output sequence Y = {y1, . . . , yN} through a map-
ping function f : X → Y . Each element yn = (pn, d

s
n, d

e
n)

of the output Y denotes one potential forged segment, where
pn denotes the forgery probability of the n-th segment, dsn de-
notes the start time offset relative to the input sequence, and
den denotes the end time offset relative to the input sequence.

Notably, for genuine (non-forged) sequences, the expected
output Y should be an empty set. This formulation en-
ables precise temporal localization of forged segments while
maintaining cross-modal consistency through unified tempo-
ral feature representations.

Considering the distinct temporal characteristics across
modalities (e.g., audio data exhibits dense temporal reso-
lution with sampling rates reaching kilohertz levels, while
video data presents sparse temporal structure with frame rates
limited to hertz levels), we implement a unified feature em-
bedding framework through temporal encoding. Specifically,
the input sequence X = {x1, . . . , xT } is encoded by encoder
e into feature representations Z = {z1, . . . , zM}. For each
feature representation zi, fL denotes the temporal sequence
length corresponding to zi and fS denotes the temporal offset
between consecutive feature representations. Consequently,
the length M of feature sequence Z is given by the following
equation:

M =

⌊
T − fL
fS

⌋
+ 1 (1)

where ⌊·⌋ denotes integer flooring.

To facilitate batch processing, variable-length sequences
are standardized through padding/truncation to a maximum
length Mmax, with masking mechanisms ensuring valid tem-
poral context propagation.

Inspired by previous research [Ojha et al., 2023], we em-
ploy pre-trained self-supervised models with frozen weights
as encoder e. Specifically, WavLM-LARGE [Chen et al.,
2022] is adopted for audio data while CLIP:ViT-B/16 [Rad-
ford et al., 2021] is adopted for video data. Compared to con-
ventional feature calculating approaches (e.g., LFCC, MFCC,
image DFT), these self-supervised models have been exposed
to massive training data, enabling superior capability in cap-
turing low-level features critical for differentiating genuine
and forged content [Yang et al., 2021]. The architectural de-
sign leverages this property to detect subtle discrepancies in-
herent in generative artifacts.

Subsequently, we employ a set of masked differential con-
volutional networks to implement feature projection, which
facilitates positional embedding integration and effectively
captures local temporal context. Specifically, for a given fea-
ture embedding z ∈ Z, the output of the masked 1D differen-
tial convolution at timestamp t0 is formulated as:

MDC(t0) = θ ·

(
−z(t0) ·

∑
tn∈D

w(tn)

)
(2)

+
∑
tn∈D

w(tn) · z(t0 + tn) (3)

where t0 denotes the current timestamp, tn denotes the
enumerated timestamps in offset set D, w(tn) denotes the
learnable convolutional weights, and θ ∈ [0, 1] is a hyper-
parameter balancing the contribution between intensity-level
and gradient-level information

3.2 FPN-Transformer Architecture
We employ N layers of R-TLM blocks [Sun et al., 2021] to
perform deep feature encoding. Compared to standard Trans-



former architectures, R-TLM incorporates additional LSTM
and Fusion layers to explicitly model cross-context repre-
sentation interactions. The multi-head self-attention (MSA)
layer in R-TLM integrates temporal context across the se-
quence. Notably, we apply localized attention masking to
constrain computations within sliding windows, motivated by
two factors: (1) forged segments exhibit localized temporal
characteristics, and (2) this design significantly reduces com-
putational complexity.

To capture hierarchical temporal features at multiple scales
for constructing a feature pyramid, we integrate R-TLM with
strided 1D depthwise convolutions. Specifically, we intro-
duce a strided depthwise 1D convolution after each MSA
layer. By aggregating outputs from multi-level R-TLM
structures, we obtain a hierarchical feature pyramid F =
{F (1), ..., F (L)} with L levels.

A critical component involves temporal alignment between
feature sequence timestamps τ and original input timestamps
t. Given a virtual timestamp τi at the i-th pyramid level and
its cumulative stride factor si, we map τi to the corresponding
physical timestamp t in the raw input domain through:

t =
⌊si
2

⌋
+ τi · si (4)

3.3 Prediction Head
We employ a dual-branch prediction head to decode the fea-
ture pyramid F into the desired output Y . The decoder con-
sists of:
Classification Head. Given feature pyramid F , the classifi-
cation head evaluates all L pyramid levels at each timestamp
t to predict the forgery probability p(t). This is implemented
through lightweight 1D convolutional networks attached to
each pyramid level, with parameters shared across levels.
Specifically, the classification network comprises 3 convolu-
tional layers (kernel size=3), layer normalization (applied to
first two layers), and ReLU activation. A final sigmoid func-
tion is applied to output dimensions to produce probabilistic
forgery predictions.
Regression Head. Distinct from the classification head,
the regression head predicts temporal boundaries only when
timestamp t lies within forged segments (During infer-
ence, we utilize the classification head’s output to determine
whether a timestamp lies within forged segments). For each
pyramid level, we predefine an output regression range to
model the start offset dst and end offset det . The regression
head employs 1D convolutional networks with ReLU activa-
tion to ensure precise distance estimation. Specifically, the
most probable forgery span [st, et] corresponding to times-
tamp t is determined by:

ct = argmax p(ct), st = t− dst , et = t− det (5)

3.4 Loss Function
Our prediction task involves dual objectives: (1) binary clas-
sification of forgery probability at each timestamp t, and (2)
temporal boundary regression for forged segments (start/end
offsets). We design a composite loss function combining two
components:

Classification Loss. We employ focal loss [Lin et al., 2017]
to address class imbalance between forged and genuine seg-
ments. For timestamp t, the classification loss (Lcls) is for-
mulated as:

Lcls = − 1

T+

T∑
t=1

1(t ∈ Ω+) · [log(pt) + γ · (1− pt)
α] (6)

where pt denotes predicted forgery probability, Ω+ represents
forged regions, T+ = |Ω+| is the total number of positive
samples, and α and γ are hyperparameters balancing hard
mining effects.
Regression Loss. For timestamps t ∈ Ω+, we minimize
DIoU loss (Lreg) [Zheng et al., 2020] between predicted
boundaries ŝt, êt and ground-truth s∗t , e

∗
t :

Lreg =
1

T+

∑
t∈Ω+

(1− DIoU(ŝt, êt; s
∗
t , e

∗
t )) (7)

Final Loss. The overall objective combines both compo-
nents:

Ltotal =
1

T+

T∑
t=1

[
λLcls + I(t ∈ Ω+)Lreg(t)

]
(8)

where λ ∈ [0, 1] is the balancing ratio between classification
and localization tasks, and I(t ∈ Ω+) is an indicator function
(1 if timestamp t lies in forged regions Ω+, 0 otherwise).

4 Experiments
4.1 Implementation Details
Preprocessing. Audio data are resampled to 16 kHz
and processed using WavLM-LARGE to extract 1024-
dimensional feature vectors at 20 ms intervals (50 FPS).
Video data undergoes frame extraction at 25 FPS, followed
by resizing to 224×224 pixels and normalization. Per-frame
feature extraction employs CLIP:ViT-B/16, generating 768-
dimensional embeddings. All implementations utilize Py-
Torch on NVIDIA L40 GPUs.
Training. We adopt the AdamW optimizer with mini-
batch processing, incorporating a 5-epoch warmup phase
and cosine decay for learning rate scheduling. The ini-
tial learning rate is 1 × 10−3 and the weight decay is 1 ×
10−2. Variable-length sequences are standardized through
padding/truncation to a maximum length of 1024, with mask-
ing mechanisms ensuring valid temporal context propagation.
The number of R-TLM blocks N is set to 6, and the number
of FPN levels L is set to 5. θ is set to 0.6 and the balancing
ratio λ of the loss is set to 0.01. The model is trained for fixed
epochs (up to 95) with a batch size of 64, and separate models
are trained for audio and video modalities.
Inference. During inference, the complete sequence is in-
put to the model with a batch size of 1. Non-Maximum Sup-
pression (NMS) [Neubeck and Van Gool, 2006] is applied
to refine predictions by eliminating highly overlapping and
inefficient instances, yielding the final forged segment out-
puts. For unimodal temporal data, the maximum forgery con-
fidence among all predicted segments is treated as the overall



Figure 2: Visualization results of our proposed method. Red represents forged segments, and yellow represents our predicted results. Our
method can accurately predict the presence of forged video and audio segments in the samples for both video and audio modalities.

Training strategy Feature Embedding Final Score
Initial Learning Rate Epochs Audio Video

1× 10−3 3 wavLM CLIP 0.7535
1× 10−3 6 wavLM CLIP 0.7501
1× 10−3 15 wavLM CLIP 0.6590
1× 10−3 36 wavLM CLIP 0.6174
1× 10−3 60 wavLM CLIP 0.6144
1× 10−3 95 wavLM CLIP 0.6000
1× 10−3 6 wav2vec XCLIP 0.7361
1× 10−3 60 wav2vec XCLIP 0.5644
1× 10−3 95 wavLM XCLIP 0.5873
1× 10−3 95 wav2vec XCLIP 0.5798
3× 10−4 2 wavLM CLIP 0.5821
3× 10−4 5 wavLM CLIP 0.7164
3× 10−4 6 wavLM CLIP 0.7218
3× 10−4 7 wavLM CLIP 0.7218
3× 10−4 8 wavLM CLIP 0.7340
3× 10−4 9 wavLM CLIP 0.7252
3× 10−4 10 wavLM CLIP 0.7201
3× 10−4 11 wavLM CLIP 0.7256
3× 10−4 12 wavLM CLIP 0.7227
3× 10−4 13 wavLM CLIP 0.7182
3× 10−4 14 wavLM CLIP 0.7126
3× 10−4 15 wavLM CLIP 0.7084

Table 1: Comparison experiments of our proposed method under varying experimental conditions, including self-supervised feature extrac-
tors, training epochs, and initial learning rates.

confidence score for the entire sequence. The final outputs
are obtained by containing both audio and video modalities,
where the higher confidence score between the two modal-
ities is selected as the final sample-level forgery confidence,
while the union of predicted audio and video forged segments
forms the complete output set of forged regions.

Dataset. We evaluate our framework on the IJCAI’25
DDL-AV dataset [Miao et al., 2025; Zhang et al., 2024a;
Zhang et al., 2024b] for model training and testing. The
dataset comprises 200k video samples in the training set, 20k
in the validation set, and 111k in the test set. These sam-
ples cover 9 deepfake audio forgery methods and 18 deepfake
video forgery techniques, ensuring comprehensive evaluation



across diverse generation paradigms.
Metrics. To comprehensively assess our method’s perfor-
mance across diverse scenarios, we adopt multi-dimensional
metrics following the IJCAI’25 Workshop on Deepfake De-
tection and Localization dataset (DDL-AV dataset). De-
tection performance is quantified using Area Under Curve
(AUC), while localization quality is measured via Average
Precision (AP) and Average Recall (AR). The localization
score is computed as:

Score =
1

16
AP@0.5 +

2

16
AP@0.75 +

2

16
AP@0.9 (9)

+
3

16
AP@0.95 +

1

16
AR@30 +

2

16
AR@20 (10)

+
2

16
AR@10 +

3

16
AR@5 (11)

The final comprehensive performance metric is defined as:

Final Score =
AUC + Score

2
(12)

This formulation balances detection accuracy and localiza-
tion precision through weighted aggregation of threshold-
specific metrics, ensuring robust evaluation of both global and
fine-grained forgery identification capabilities.

4.2 Experimental Results
Visualization results. Figure 2 illustrates the visualization
of our method’s prediction results on multimodal input data.
The visualizations demonstrate that our framework effec-
tively detects and localizes forged segments in both video
and audio modalities, with clear temporal alignment between
predicted boundaries and ground-truth forgery regions. This
empirical evidence validates the cross-modal consistency and
precision of our detection mechanism.
Quantitative results. Table 1 presents a comprehensive
performance comparison of our proposed framework under
varying experimental conditions, including self-supervised
feature extractors, training epochs, and initial learning rates.
Our optimal configuration achieves a final score of 0.7535,
significantly outperforming baseline variants.

• Self-supervised feature extractors. To evaluate
modality-specific feature representation capabilities, we
contrast two audio feature extractors (Wav2Vec [Baevski
et al., 2020] vs. WavLM) and two video feature extrac-
tors (CLIP vs. XCLIP [Ni et al., 2022]). While WavLM
and CLIP consistently yield superior performance (Ta-
ble 1), the marginal drops observed in Wav2Vec/XCLIP
configurations can be attributed to: 1) Wav2Vec has
lower model capacity (768-dimensional features vs.
WavLM’s 1024D) and reduced contextual modeling ca-
pability due to its shallow transformer architecture; 2)
Temporal misalignment arising from XCLIP’s original
pretraining on 8 FPS videos, which conflicts with DDL-
AV’s 25 FPS format. Despite incorporating temporal en-
coding mechanisms, XCLIP struggles to adapt to higher
frame rate dynamics, leading to suboptimal boundary lo-
calization; Notably, the performance gaps across extrac-
tors remain statistically insignificant, demonstrating the

robustness of our framework against variations in low-
level feature representations. This suggests that our hier-
archical FPN-Transformer architecture successfully ab-
stracts modality-specific discrepancies into unified tem-
poral feature spaces.

• Training Depth and Learning Rate Analysis. When
training with 1× 10−3 initial learning rate, deeper train-
ing (higher epochs) correlates with reduced generaliza-
tion performance on DDL-AV’s test set, which contains
forgery methods absent in training. This manifests as de-
clining scores beyond 3 epochs (optimal point). Reduc-
ing the learning rate to 3×10−4 reveals a non-monotonic
generalization trend: performance improves initially but
degrades at excessive depths. This reveals a critical
trade-off between training depth and generalization ro-
bustness. Our findings suggest that balancing model
capacity with controlled training duration may mitigate
performance drops on out-of-distribution forgery sam-
ples, offering a novel perspective for improving detec-
tion systems’ adaptability to evolving deepfake tech-
niques.

5 Conclusion and Discussion
This paper presents a novel multi-modal deepfake detection
and localization framework based on FPN-Transformer, ad-
dressing critical limitations in cross-modal generalization and
temporal boundary regression. By leveraging pre-trained
self-supervised models (WavLM for audio, CLIP for video)
to extract hierarchical temporal features, combined with a
multi-scale feature pyramid constructed via R-TLM blocks
and localized attention mechanisms, our approach achieves
robust analysis of cross-context temporal dependencies. The
dual-branch prediction head enables simultaneous forgery
probability estimation and precise temporal offset refinement,
achieving frame-level localization accuracy. Evaluated on
the IJCAI’25 DDL-AV benchmark, our method attains a fi-
nal score of 0.7535, demonstrating superior performance in
detecting and localizing sophisticated, fine-grained manipu-
lations in challenging environments.

Our work advances the field by providing a unified solution
for generalized deepfake detection, bridging the gap between
unimodal approaches and complex real-world scenarios. Fu-
ture research may explore dynamic adaptation to evolving
generative techniques and further optimize computational ef-
ficiency for real-time applications.
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