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Figure 1: Real video frames sourced from Pexels (Top); AI-generated frames by Veo [Veo, 2024]
prompted with “a person doing a dance move” (Bottom). We describe how a low-dimensional CLIP
embedding effectively and robustly distinguishes between real and AI-generated videos.

Abstract

AI-generated video generation continues its jour-
ney through the uncanny valley to produce content
that is increasingly perceptually indistinguishable
from reality. To better protect individuals, orga-
nizations, and societies from its malicious appli-
cations, we describe an effective and robust tech-
nique for distinguishing real from AI-generated
human motion using multi-modal semantic em-
beddings. Our method is robust to the types
of laundering that typically confound more low-
to mid-level approaches, including resolution and
compression attacks. This method is evaluated
against DeepAction, a custom-built, open-sourced
dataset of video clips with human actions gener-
ated by seven text-to-video AI models and match-
ing real footage. The dataset is available under
an academic license at https://www.huggingface.
co/datasets/faridlab/deepaction v1.

1 Introduction
Generating human motion in computer-graphics animation is
notoriously difficult because of the complexity of human dy-
namics and kinematics [McDonnell et al., 2012; Debarba et
al., 2020; Diel et al., 2021; Ng et al., 2024] and because of
the sensitivity of the human visual system to biological mo-
tion [Neri et al., 1998]. While motion capture has signifi-
cantly improved the realism of complex human motion, gaps
have remained.

Generative AI, unlike earlier model-based animation, has
emerged as an intriguing new genre for computer animation.
While earlier versions of AI-generated video were things
nightmares are made of (see, for example, “Will Smith eat-
ing spaghetti”1), recent advances have shown significant im-
provements in photo-realism and temporal consistency.

A recent study found that AI-generated faces are nearly in-
distinguishable from real faces [Nightingale and Farid, 2022],
and AI-generated voices are a close second in terms of natu-

1https://www.youtube.com/watch?v=XQr4Xklqzw8
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ralness and identity [Barrington and Farid, 2024]. There is
reason to believe, therefore, that AI-generated videos may
pass through the uncanny valley.

We have started to see AI-generated images weaponized
in the form of child sexual abuse material, non-consensual
sexual imagery, fraud, and as an accelerant to disinformation
campaigns [Farid, 2022]. There is no reason, therefore, to
believe that AI-generated video will not follow suit.

Video deepfakes fall into two broad categories: imperson-
ation and text-to-video. Although there are several differ-
ent incarnations of impersonation deepfakes, two of the most
popular are lip-sync and face-swap deepfakes. In a face-swap
deepfake, a person’s face in an original video is replaced with
another [Nirkin et al., 2019], and in a lip-sync deepfake, a
person’s mouth region is modified to be consistent with a new
voice track [Suwajanakorn et al., 2017].

By contrast, text-to-video deepfakes are generated en-
tirely from scratch to match a user-specified text prompt.
They represent a natural evolution of text-to-image models
(e.g., DALL-E, Firefly, Midjourney, etc.). Our focus is on de-
tecting these text-to-video deepfakes, particularly those de-
picting human motion.

Motivated by, and building upon, earlier work, we describe
a technique to detect AI-generated videos containing human
motion. Our initial focus is on humans because these videos
are of most concern when it comes to the harms enumerated
above. Despite this focus, we will discuss why our approach
is likely to generalize to other types of video content. We
evaluate the efficacy of our approach on a diverse dataset of
our creation consisting of real and matching (in terms of the
human actions depicted) AI-generated videos from seven dif-
ferent generative-AI models. We demonstrate the robustness
of our detection in the face of standard laundering attacks
like resizing and transcoding, and evaluate its generalizabil-
ity to previously unseen models. Our work contributes to this
nascent literature with the:

1. development of a task-specific CLIP embedding that
outperforms generic CLIP embeddings (FT-CLIP);

2. development of a new unsupervised forensic technique
that requires no explicit training (frame-to-prompt);

3. improvement in the generalizability of detection to pre-
viously unseen content and synthesis models;

4. extension from image- to video-based analysis; and
5. construction and release of DeepAction, a new bench-

mark dataset of real and AI-generated human motion.

2 Related Work
Identifying manipulated content (image, audio, video) can
be partitioned into two broad categories: (1) active and (2)
reactive. Active approaches involve inserting metadata or
imperceptible watermarks at the time of synthesis to facili-
tate downstream detection [Collomosse and Parsons, 2024].
These approaches are appealing for their simplicity but are
vulnerable to counter-attack in which the inserted credentials
can be removed [Voloshynovskiy et al., 2001] (although the
extraction and centralized storage of a distinct digital signa-
ture – perceptual hash– can be used to reattach credentials).

Reactive techniques – operating in the absence of creden-
tials – fall into two basic approaches: (2a) learning-based,
in which features that distinguish real from fake content are
learned by a range of machine-learning techniques, and (2b)
artifact-based, in which a range of low-level (pixel-based) to
high-level (semantic-based) features are explicitly extracted
to distinguish between real and fake content [Farid, 2022].

There is a rich literature of techniques for detecting AI-
generated images [Farid, 2022] and a more nascent literature
for detecting AI-generated voices [Blue et al., 2022; Pianese
et al., 2022; Barrington et al., 2023]. The literature for de-
tecting AI-generated or AI-manipulated videos has primarily
focused on face-swap deepfakes [Agarwal et al., 2020; Nirkin
et al., 2021; Jia et al., 2022], and lip-sync deepfakes [Boháček
and Farid, 2022; Bohacek and Farid, 2024; Datta et al., 2024].

Because text-to-video AI generation has only recently
emerged as perceptually compelling, the literature on detect-
ing these videos is more sparse. A recent example [Vahdati
et al., 2024] leverages low-level features, but these tend to be
vulnerable to compression artifacts, which in video – unlike
standard image JPEG compression – are highly spatially and
temporally variable.

Another recent example [Jia et al., 2024] explores the po-
tential of multi-modal large language models (LLMs) for de-
tecting AI-generated faces.The authors prompt ChatGPT with
an image and prompt like “Tell me if this is an AI-generated
image.” This approach achieves an average accuracy of 75%
(as measured by area under the curve, AUC). Although not
particularly accurate, what is intriguing about this approach
is that it points to a potentially semantic-level reasoning.

Recent studies took a more direct semantic approach by
leveraging a contrastive language-image pretraining (CLIP)
representation [Radford et al., 2021]. In [Cozzolino et al.,
2024], the authors extract a CLIP embedding from real and
AI-generated images and with only a linear SVM achieve de-
tection accuracy ranging from 85% to 90% depending on the
amount of image post-processing.

In [Khan and Dang-Nguyen, 2024], the authors also ex-
ploit CLIP embeddings along with a range of transfer learn-
ing strategies to achieve detection accuracy between 95% and
98%; their classifiers show good but not perfect generalizabil-
ity, achieving an accuracy between 86% and 89%.

3 Dataset
We generated 3,100 video clips from seven text-to-video
AI models: BD AnimateDiff [Lin and Yang, 2024],
CogVideoX-5B [Yang et al., 2024], Lumiere2 [Bar-Tal et
al., 2024], RunwayML Gen3 [Gen3, 2024], Stable Diffu-
sion Txt2Img+Img2Vid [Blattmann et al., 2023], Veo3 [Veo,
2024], and VideoPoet [Kondratyuk et al., 2023]. The de-
fault generation parameters were used for each model. These
AI-generated videos are 297 minutes in length constituting
254,632 video frames, Figure 2.

These video clips depict 100 distinct human actions and
vary in length from 2 to 10.7 seconds, in resolution from

2An earlier version of the Lumiere model was used which was
not specifically trained or fine-tuned on human motion.

3A pre-release version of the Veo model was used.
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Figure 2: Sample frames from one real and seven AI-generated videos prompted with “a person dancing to music”.

512×512 to 2048×1152 pixels, and in orientation (landscape
and portrait). Each video was generated from a short prompt,
which itself was generated by asking ChatGPT to create short
descriptive prompts of human actions (see Appendix A).

We also curated a set of 100 real videos from Pexels [Pex-
els, 2024], an open-source stock video database, matched to
the human-action prompts described above. These real videos
are 28 minutes in length constituting 44,475 individual video
frames. These videos were matched on general action so that
the embedding representations (described next) between real
and fake would not be based on semantic differences.

The resulting dataset, called DeepAction, comprises eight
video categories (seven AI-generated and one real) and is
made publicly available.

4 Methods

We describe four CLIP-like, multi-modal embeddings and
proceed with classification schemes used to distinguish the
real from the fake.

4.1 Embeddings
Multi-modal embedding models map an image and its corre-
sponding descriptive caption into a shared vector space, al-
lowing comparisons between these modalities. These em-
beddings have been found to be effective across many com-
puter vision and natural language processing tasks [Shen et
al., 2021; Song et al., 2022].

Each video in our dataset is represented as a sequence
of video-frame embeddings, extracted using three off-
the-shelf embedding models–CLIP [Radford et al., 2021],
SigLIP [Zhai et al., 2023], and JinaCLIP [Koukounas et al.,
2024]–as well as a custom fine-tuned CLIP model.

1. The CLIP embedding model was trained on LAION-
2B [Schuhmann et al., 2022]. We used the smallest 512-
D baseline model ViT-B/32.

2. The SigLIP embedding model was trained on We-
bLI [Chen et al., 2022], which is over 32% larger than
LAION-2B. Unlike CLIP’s softmax-based contrastive
loss, SigLIP uses a sigmoid loss. We used the 768-D
patch16-224 model variant.



3. The JinaCLIP embedding model was trained on
LAION-400M [Schuhmann et al., 2021] along with an
additional set of 40 text-pair datasets. While CLIP’s
training optimized for text-image representation align-
ment, JinaCLIP was trained to jointly optimize text-
image and text-text representation alignment. We used
the base 768-D v1 model.

4. We created a custom fine-tuned CLIP (FT-CLIP) em-
bedding model from the baseline CLIP model described
above. We used the same fine-tuning methodology
and hyperparameters as described in [Khan and Dang-
Nguyen, 2024].

See Appendix for baseline model and training details.

4.2 Classification
We deploy three different classification strategies that, lever-
aging the embeddings enumerated in the previous section,
make a prediction of a video frame being real or fake. The
first two supervised classifiers are based on a support vec-
tor machine (SVM), and the third unsupervised classifier is
based on a simple cosine similarity between text and frame
embedding. In each case, a video, represented as a sequence
of frame embeddings, is classified as fake if a majority of the
frames are classified as fake.

We intentionally take a simple approach here instead of
leveraging heavier-weight classifiers so as to place emphasis
on the power of the multi-modal embeddings.

1. A two-class SVM [Cortes and Vapnik, 1995], imple-
mented in scikit-learn4, is used to classify video frames
as real or fake, in which all seven text-to-video models
are bundled into a single ’fake’ class.

2. A multi-class SVM [Cortes and Vapnik, 1995], also im-
plemented in scikit-learn, classifies the source of each
video frame across eight classes. One class represents
real videos, and seven classes represent each of seven
different text-to-video AI models.

3. The previous classifiers follow a typical supervised
learning approach in which the SVMs are trained on a
subset of the video frames and evaluated on the remain-
ing frames. In this third frame-to-prompt approach,
each video-frame embedding is compared – through a
simple cosine similarity – to an embedding of one of two
prompts (e.g., “a real image” and “a fake image”). A
frame is classified by selecting the class (real/fake) with
the largest cosine similarity.

5 Results
We now describe a pair-wise embedding-classifier perfor-
mance for discriminating between real and AI-generated
videos, followed by an evaluation of the robustness in the
face of standard laundering attacks, and generalizability to
synthesis models not seen during classifier training.

For the CLIP, SigLIP, and JinaCLIP embeddings, our
dataset is randomly split into an 80/20 train/test partition.

4https://www.scikit-learn.org/stable/modules/generated/sklearn.
svm.SVC.html

Two-Class Multi-Class
Embedding Kernel Frame (%) Video (%) Frame (%) Video (%)

CLIP
linear 84.3 97.0 87.4 98.2
RBF 81.6 96.7 89.3 98.3
poly 79.0 95.9 89.0 98.3

SigLIP
linear 89.7 98.1 90.8 98.5
RBF 84.4 97.1 91.5 98.5
poly 83.0 96.9 90.9 98.4

JinaCLIP
linear 86.9 97.2 85.9 97.2
RBF 78.1 96.1 87.3 97.9
poly 76.1 95.3 87.0 97.8

FT-CLIP
linear 90.7 98.5 82.8 97.6
RBF 93.2 99.1 84.8 97.6
poly 92.6 99.2 85.1 97.7

Table 1: Two-class and multi-class SVM classification accu-
racy (percent) for four different embeddings (CLIP, SigLIP,
JinaCLIP, fine-tuned CLIP) and three different SVM kernels
(linear, RBF, polynomial). Results are reported on a per
video-frame and per video basis. Across all kernel functions,
the fine-tuned CLIP provides the best performance for the
two-class model, while SigLIP provides the best performance
for the multi-class model.

For the fine-tuned CLIP, the dataset is randomly split into
a 40/40/20 partition, where the first 40% is used for CLIP
fine-tuning, 40% is used for model training, and 20% is used
for testing. The splits are determined at the action (prompt)
level to ensure no overlap across partitions.

In each case, we report the mean frame- and video-level
accuracy on the test set, averaged over five random train/test
repetitions. Because our dataset is imbalanced, with signifi-
cantly more fake than real videos, we under-sample the fake
videos. Throughout, we report accuracy as a macro-average
by evenly weighting the class accuracies.

Two-class. Shown in the left portion of Table 1 is the
frame- and video-level accuracy for the two-class SVMs with
three different kernels: linear, radial basis function (RBF),
and polynomial.

At the frame level, macro-accuracy ranges from a low of
79.0% to a high of 92.6%. For the CLIP embeddings (top
three rows), the linear kernel is surprisingly more effective
than the non-linear kernels. For the fine-tuned CLIP, the RBF
kernel is the highest performer. Although performance is
somewhat comparable across different embeddings, the fine-
tuned CLIP offers the best performance. At the video level,
accuracy across embeddings and classifiers is comparable,
ranging from a low of 95.3% to a high of 99.2%.

For all embeddings and all classifiers, there is a slight fake
bias in which fake content is correctly classified at a higher
rate by, on average, 5.2 percentage points. For example, for
the best performing model (FT-CLIP with a poly kernel), the
video-level accuracy for fake videos is 99.9% as compared to
98.5% for the real videos.

Shown in Figure 3 is a visualization of seven pairwise, real-
fake finetuned-CLIP embeddings, linearly reduced to a 2D
subspace using PCA. Even in this reduced space, we see a
good separation between the classes (the seven AI models are
considered separately only for ease of visualization).

Multi-class. Shown in the right portion of Table 1 is the
frame- and video-level accuracy for the multi-class SVMs.
At the frame level, accuracy slightly outperforms the two-

https://www.scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://www.scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


Figure 3: Real (blue) vs fake (orange) fine-tuned CLIP embed-
dings. See Table 1.

Figure 4: VideoPoet (blue) vs other models (orange) using
fine-tuned CLIP embeddings.

class classifier, ranging from a low of 82.8% to a high of
91.5%. Generally speaking, the non-linear kernels (RBF and
polynomial) outperform the linear kernel, and unlike the two-
class, the SigLIP embedding now outperforms the other em-
beddings across all kernel functions.

There is a slight bias across all seven AI models with the
Veo model consistently misclassified. For example, for the
best-performing model (SigLIP with an RBF kernel), the dif-
ference between the best (VideoPoet) and worst (Veo) per-
forming inter-class accuracy is 100% and 93.7%.

At the video level, accuracy across all embeddings and
classifiers are comparable ranging from a low of 97.6% to
a high of 98.5%.

Shown in Figure 4 is a PCA-based visualization of the pair-
wise fine-tuned CLIP embeddings between one text-to-video
model (VideoPoet) and each of six other text-to-video mod-
els. Even in this reduced space, we see a good separation be-
tween the different AI models (the six AI models are consid-
ered separately only for ease of visualization; other pair-wise
models exhibit similar patterns).

Frame-to-prompt. Shown in Table 2 is the frame- and
video-level accuracy of frame-to-prompt classifiers (Sec-
tion 4.2) for five different paired prompts:

• (P1) real photo vs. fake photo,

• (P2) real image vs. fake image,

• (P3) authentic image vs. AI-generated image,

• (P4) authentic photo vs. manipulated photo,

• (P5) authentic image vs. manipulated image.

At the frame level, accuracy is generally significantly lower
than the previous two- and multi-class SVMs, with a maxi-
mum accuracy of 95.2% for the fine-tuned CLIP embedding
and the P1 paired prompt authentic image vs. AI-generated
image. At the video level, accuracy for the same fine-tuned
CLIP and P1 prompt improves slightly to 96.2%. This is per-
haps not surprising since we expect these semantic embed-
dings to be highly correlated across a video.

As with the two-class SVM, we see a bias—only this time,
towards real videos. For example, the video-level classifica-
tion using FT-CLIP and prompt P1 correctly classifies 100%
of the real as compared to 92.4% of the fake videos.

Compared to the best-performing two-class SVM with a
video-level accuracy of 99.2% (Table 1), the best-performing
frame-to-prompt underperforms by only 6.6 percentage
points. This is particularly impressive given that the frame-
to-prompt approach requires no explicit training.

5.1 Robustness
Whether intentional or not, videos subjected to a forensic
analysis often undergo laundering in the form of changes in
resolution and compression. Techniques leveraging low-level
features are often highly vulnerable to this type of launder-
ing because even these simple modifications obliterate dis-
tinguishing characteristics. Because the multi-modal embed-
dings are designed to extract semantic-level meaning, we ex-
pect these features to be more resilient to laundering.

Shown in the left portion of Table 3 are the frame- and
video-level accuracies for the CLIP embedding and a two-
class linear SVM for videos with progressively lower reso-
lution (we quantify the change in resolution as a percentage



Embedding Frame (%)
P1 P2 P3 P4 P5

CLIP 52.9 48.0 63.6 64.7 60.3
SigLIP 49.0 47.8 49.1 49.1 47.2

JinaCLIP 51.8 55.3 54.0 55.7 58.0
FT-CLIP 95.2 91.0 83.1 78.3 79.9

Video (%)
P1 P2 P3 P4 P5

CLIP 53.5 44.2 62.0 63.7 58.4
SigLIP 47.7 46.6 49.2 49.0 47.6

JinaCLIP 56.7 55.6 56.2 59.9 60.5
FT-CLIP 96.2 90.7 85.6 80.9 81.8

Table 2: Frame-to-prompt classification accuracy across dif-
ferent embeddings (CLIP, SigLIP, JinaCLIP, fine-tuned CLIP)
and five different prompt pairs: (P1) real photo vs. fake
photo; (P2) real image vs. fake image; (P3) authentic image
vs. AI-generated image; (P4) authentic photo vs. manipulated
photo; and (P5) authentic image vs. manipulated image. Re-
sults are reported on a per video-frame and per video basis.

Resolution Compression
amount Frame (%) Video (%) Frame (%) Video (%)

100% 83.1 96.9 83.1 96.9
75% 78.8 95.0 82.8 96.5
50% 72.5 93.8 81.8 96.5
25% 62.5 72.8 79.5 95.1
10% 49.5 51.0 73.7 92.3

Table 3: Accuracy for a two-class linear SVM and CLIP
embeddings for videos at 100%, 75%, 50%, 25%, and 10%
of their original resolution (left) and compression ratio mea-
sured as bits per second (right). Results are reported on a per
frame and per video basis.

because the original videos were of varying resolution, Sec-
tion 3). At the video level, accuracy remains relatively high
for videos at 50% or higher of their original resolution. This
corresponds to an average resolution of 892× 355.

Shown in the right portion of Table 3 are the same frame-
and video-level accuracies for videos with progressively
lower compression (bits per second) compared to the origi-
nal video compression. Here, accuracy remains high even for
videos at 10% of the original compression rate. This lowest
compression corresponds to an average bit rate of 157 kbps.

The loss in accuracy for lower-resolution videos suggests
that there are some small-scale features that are important to
distinguishing the real from the fake.

5.2 Generalizability
Our frame-to-prompt classifier requires no training, which
makes generalizability to new synthesis models more likely.
Our two- and multi-class SVMs, however, do require training,
and these types of supervised-learning models often struggle
to generalize. To evaluate the generalizability of our SVMs,
we performed a leave-one-out analysis in which two-class lin-
ear SVMs are trained on CLIP embeddings of six of the seven
text-to-video models.

Leave-one-out Frame (%) Video (%)
BDAnimateDiffLightning 82.3 94.9

CogVideoX5B 82.6 95.7
Lumiere 79.2 91.9

RunwayML 81.4 94.8
StableDiffusion 83.6 96.7

Veo 82.0 95.9
VideoPoet 82.6 96.2

Table 4: Average accuracy of a two-class linear SVM and
CLIP embedding, where one text-to-video model is left out
of the training set.

Shown in Table 4 are the frame- and video-level accuracies
evaluated on just the real and left-out videos. When trained
on all seven text-to-video models, accuracy is 96.9% (Ta-
ble 1). By comparison, accuracy in this leave-one-out con-
dition ranges from a low of 91.9% to a high of 96.7% with
an average of 95.2%, showing that our approach generalizes
well to previously unseen models.

5.3 Non-Human Motion
Having been trained on only videos containing human mo-
tion, we wondered if our two-class SVM would generalize
to arbitrary text-to-video models. We evaluated our model
on 100 videos generated by Sora [Sora, 2024] and Run-
wayML [Gen3, 2024] that did not contain any humans or
human-motion. With the CLIP embeddings, the model cor-
rectly classified 97.1% of these videos as AI-generated show-
ing generalization to non-human motion and to one text-to-
video model not seen in training (Sora).

For the frame-to-prompt model, the highest video-level ac-
curacy obtained was for the fine-tuned CLIP embedding and
P3 prompt at an accuracy of 97.5%, on par with the human-
motion (see Table 2).

This result suggests that our model has not learned some-
thing specific to AI-generated human motion but instead has
learned something distinct about AI-generated content. From
a forensic perspective, this is highly desirable.

We do not yet fully understand what specific properties of
the multi-modal embeddings are distinct from AI-generated
content. We speculate, however, that because generative-
AI models rely on multi-modal embeddings to convert text
prompts into images and videos, the extracted embeddings
are distinct from those of real content. Another possibility
is that generative-AI models may be prompted with distinct
properties like level of descriptiveness, yielding more com-
pact content as compared to real videos.

5.4 Talking Heads
We next wondered if our two-class SVM would generalize
to a more constrained type of human motion in the form of
face-swap and lip-sync deepfakes [Farid, 2022]. We evalu-
ated our model on 100 real videos and 100 deepfake videos
from the DeepSpeak Dataset [Barrington et al., 2024]. These
videos depict people sitting in front of their webcam respond-
ing to questions and prompts from which face-swap and lip-
sync deepfakes were created. With the CLIP embeddings,



the macro-average model accuracy is 55.8% heavily biased
to classifying content as fake at a rate of 93.1% as compared
to real at a rate of 15.2%. This is perhaps not surprising
since, with the exception of the face, the content in these AI-
manipulated videos is authentic.

For the frame-to-prompt model, the highest accuracy of
60.1% is obtained from the fine-tuned CLIP embedding and
P2 prompt, significantly lower than for the full-body, human-
motion videos (see Table 2).

Here, we do not see generalization with respect to the two-
class model or frame-to-prompt. It remains to be seen if both
approaches will improve with training in the case of the two-
class model, and updating the fine-tuned CLIP with these
types of deepfakes.

5.5 CGI
Lastly, we wondered if our two-class SVM would generalize
to non-AI-generated video in the form of CGI. We evaluated
the trained two-class SVM on videos from the GTA-Human
dataset [Cai et al., 2021]. We evaluated our model on 100
GTA-Human videos (cropped around the human movement
at a resolution of 640 × 480 pixels). With the CLIP em-
beddings, the model correctly classified only 39.1% of these
videos. Our model does not generalize to CGI.

Result for the frame-to-prompt model were mixed. Aver-
aged across all prompts (P*), accuracy for the CLIP embed-
ding was 76.1%, as compared to 15.0% for JinaCLIP, and
48.9% for FT-CLIP.

Performance for SigLIP across all prompts was perfect
at 100%. That is, the SigLIP embedding for these video
frames is more similar to the “AI-generated”, “unrealistic”,
or “manipulated” prompts than the “authentic” or “realistic”
prompts. We don’t fully understand why there is such a large
discrepancy here across embedding, but it may be possible
that SigLIP was exposed to CGI content during training.

5.6 Comparison to Related Work
Due to the lack of standardized benchmarks, comparing
methods remains imperfect. Nevertheless, we provide a com-
parison to related work by comparing baseline accuracy and
generalizability to unseen generative models. The latter is
particularly important because true efficacy in the wild will
be limited by the ability of detection models to generalize.

When trained on videos from all four text-to-video AI
models, the method described in [Vahdati et al., 2024] attains
an AUC in the range 98.5 to 99.3. When one model is left out,
the AUC drops to between 67.1 and 77.3, revealing relatively
poor generalizability.

When trained on videos from all models, our two-class
linear SVM with CLIP embeddings attains an accuracy of
96.9%. When one model is left out, the accuracy drops to
between 91.9% and 96.7%. Although base-level accuracy is
comparable, our method generalizes to videos from unseen
models better than earlier approaches.

Although previous approaches have only focused on im-
ages, our frame- and video-level accuracy and generalizabil-
ity are comparable or better than previous approaches [Jia et
al., 2024; Cozzolino et al., 2024; Khan and Dang-Nguyen,

2024] (Section 5.6). Our frame-to-prompt is particularly at-
tractive because it requires no explicit learning, making de-
ployment relatively straightforward.

6 Discussion

When we first started to think about the problem of distin-
guishing real from AI-generated human motion, we thought
to take a physics-based approach leveraging advances in 3D
human-body modeling [Loper et al., 2023]. We hypothesized
that by extracting 3D models of the human body, we could
expose implausible dynamics and kinematics in AI-generated
motion. We, however, quickly ran into obstacles and found it
difficult to consistently and reliably extract 3D models in a
wide range of human poses and levels of occlusion.

This led us to take a more learning-based approach. Want-
ing to avoid exploiting low-level features [Vahdati et al.,
2024] vulnerable to laundering, we looked towards more
semantic-level features, which, as we have shown, are more
resilient to laundering.

As with any authentication scheme, we must consider vul-
nerability to counter-attack by an adversary. Having already
shown resilience to standard laundering, we will eventually
need to consider a more sophisticated adversarial attack [Car-
lini and Farid, 2020].

It has long been the goal – and challenge – of media foren-
sics to extract semantic-level features that can distinguish real
from fake or manipulated content. While we cannot say for
sure that CLIP embeddings of the form explored here capture
truly semantic properties, their resilience to resolution and
quality and their generalizability suggest semantic-like repre-
sentations. This is particularly the case for the surprisingly
high performance achieved by our frame-to-prompt approach
in which a video-frame embedding is simply compared to a
pair of text embeddings of the form “authentic image” and
“AI-generated image.”

As text-to-video models advance in photorealism and com-
putational efficiency [Yu et al., 2024], complementary mod-
els for video-to-video generation and text-based video editing
are also improving [Bao et al., 2024]. We should expect that
the binary classification of real vs. fake will soon be com-
plicated by hybrid videos that are partially AI-generated or
AI-adjusted. Whether semantic methods, such as ours, can
capture such subtleties remains to be seen.

Ethical Statement

Unlike the ethical considerations that should be weighed in
the creation of generative-AI models (e.g., training data own-
ership and potential misuse in the form of the creation of
non-consensual intimate imagery), we don’t anticipate sim-
ilar concerns with the development of techniques to detect
AI-generated content. We recognize, however, that describ-
ing a detection technique could further enable the creation of
more compelling deepfakes. We believe, however, that the
benefit to the scientific field outweighs this risk, and to miti-
gate this risk we have chosen not to open-source our code.
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A Experimental Setup
A.1 CLIP
The following model was used:

https://huggingface.co/openai/clip-vit-base-patch32

A.2 SigLIP
The following model was used:

https://huggingface.co/google/siglip-base-patch16-224

A.3 JinaCLIP
The following model was used:

https://huggingface.co/jinaai/jina-clip-v1

A.4 FT-CLIP
The model was fine-tuned for one warm-up epoch at a learn-
ing rate of 10−5 and one regular epoch at a learning rate of
2·10−3. An SGD optimizer with a cosine learning rate sched-
uler was employed for both epochs. The batch size was set to
16 for training and 100 for testing. The training set comprised
two balanced sets of real and AI-generated frames, with cap-
tions constructed as ”a {REAL/FAKE} image of {ACTION
PROMPT}”. Training was performed on an A100 GPU for
approximately eight hours.

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/google/siglip-base-patch16-224
https://huggingface.co/jinaai/jina-clip-v1


A Video Generation Prompts

A person walking through a park. A person dancing in their living room.
A person doing yoga in their backyard. A person cooking a meal in the kitchen.
A person playing fetch with their dog. A person riding a bicycle down the street.
A person jogging on a sidewalk. A person lifting weights at home.
A person practicing a musical instrument. A person painting on a canvas.
A person doing push-ups in their living room. A person stretching before a workout.
A person reading a book in a cozy chair. A person writing in a journal.
A person meditating in a quiet room. A person gardening in their backyard.
A person playing a board game with family. A person folding laundry.
A person making a bed. A person doing a puzzle.
A person brushing their hair. A person tying their shoes.
A person washing dishes. A person vacuuming the living room.
A person watering plants. A person sewing on a sewing machine.
A person knitting on the couch. A person ironing clothes.
A person mopping the floor. A person baking cookies.
A person eating a meal at the table. A person talking on the phone.
A person brushing their teeth. A person playing with a pet.
A person working on a laptop. A person watching TV.
A person drinking coffee on the porch. A person taking a selfie.
A person organizing a bookshelf. A person practicing calligraphy.
A person doing sit-ups. A person practicing a dance move in front of a mirror.
A person applying makeup. A person trimming a plant.
A person playing catch in the backyard. A person skating in a driveway.
A person raking leaves. A person cleaning windows.
A person decorating a cake. A person unboxing a package.
A person eating popcorn while watching a movie. A person putting together a DIY project.
A person reading a bedtime story. A person practicing a speech.
A person blowing out birthday candles. A person organizing their closet.
A person playing an online game. A person having a video call.
A person building a model. A person practicing origami.
A person doing jumping jacks. A person dancing to music.
A person coloring in a coloring book. A person taking a walk with a friend.
A person writing a letter. A person enjoying a picnic.
A person birdwatching in the backyard. A person making a smoothie.
A person cutting paper for a craft. A person playing with building blocks.
A person wrapping a gift. A person lighting a candle.
A person drawing a picture. A person setting the table.
A person playing with a toy. A person cleaning a mirror.
A person arranging flowers. A person holding a pet.
A person organizing a drawer. A person folding a paper airplane.
A person playing a card game. A person practicing a yoga pose.
A person writing a grocery list. A person doing a handstand against a wall.
A person making a sandcastle. A person playing a sport in the backyard.
A person performing a simple magic trick. A person showing a thumbs-up.
A person waving hello. A person doing a dance move.
A person practicing a hobby. A person clapping their hands.
A person jumping with joy. A person making a funny face.
A person giving a high-five. A person giving a thumbs-down.
A person walking up stairs. A person walking down the stairs.
A person walking down a street. A person jogging on a track.
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